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To Mike



Preface

About This Book

This book was first suggested to Springer in 2004, though its origins go back
to changes made two years earlier to the structure of the University of Hull’s
Computer Science programme. At the same time, my own visualization re-
search was leading towards a systematic view of data and techniques that
I felt could be educationally valuable. In 2003 T thus sat down with some
trepidation to write a visualization course founded on research in the area
but nonetheless accessible to students. This course could, however, involve
no mathematics beyond GCSE, in line with university admissions practices
of that time. Writing the course involved generating many new illustrations,
in the form of both line drawings and visualization screenshots and, wish-
ing to get maximum mileage out of this effort, the idea of writing a book to
accompany the course came about.

At the University of Hull, our practical visualization teaching is based
on IRIS Explorer, an application builder-type package from NAG Ltd. Origi-
nally this book was to have been both an introduction to visualization and a
handbook for beginners in IRIS Explorer, with ‘virtual laboratories’ running
throughout it to illustrate certain points. Following comments from review-
ers, however, its emphasis has changed. Most of the screenshots and all of
the colour plates are attributable to IRIS Explorer, but explanatory mate-
rial is presented in general terms without reference to any particular pack-
age; the virtual laboratories comprise some of the example problems con-
fined to the ends of certain chapters. The necessary IRIS Explorer software to
tackle the problems on Windows(TM) machines is hosted on Springer’s web
site; go to http://www.springer.com/1-84628-494-5 to download the files you
will need. If you are not an IRIS Explorer user, you can find out about it
at http://www.nag.co.uk/Welcome TEC.asp. Trial copies that will run for a
month — more than enough time to complete the problems — are available.

Although the software in support of the problems presently caters just
for IRIS Explorer users, the phrasing of the problems and their solutions in
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the text is, I hope, sufficiently general to allow supporting software in other
packages to be contributed at a later date. Needless to say, the publisher and I
would be very pleased to hear from other teachers of visualization using differ-
ent packages who might in due course wish to contribute complementary soft-
ware to support the problem and solution set used in this book. Lecture slides
to accompany the book are also available from http://www.springer.com/1-
84628-494-5. Contact Springer on 00800 777 46437, or via their Web site, to
obtain a token that will give you access.

In order to achieve a balance between scholarship and pragmatism, and
bearing in mind that this is an introductory book, I took the decision not to
cite the literature throughout the text. Instead, there is a chapter devoted to
further reading which goes through the material I draw upon. Certain refer-
ences that I believe are key to the subject are included there, but I make no
pretence that this chapter describes the state-of-the-art, since the references
span more than three decades of research. As such it is simply a record of work
which I have found useful whilst trying to draw together the various concepts.
The chapter describing software should be viewed likewise — inclusion or omis-
sion of any particular package should not be regarded as significant, rather it
is those I have met myself which are mentioned.
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Introduction

Visualisation as a human activity predates computing by hundreds of years,
possibly thousands if we include cave paintings as examples of Man’s attempts
to convey mental imagery to his fellows. Visualisation specifically in the service
of science has a rather shorter but distinguished history of its own, with graphs
and models produced by hand all having been used to explain observations,
make predictions, and understand theories.

The current era of visualisation, however, is different in its pace and spread,
and both can be attributed to the modern invention of the computer. Today,
we are bombarded with visual imagery — no news report is considered com-
plete without flying in graphs of statistics; the weather report can be seen
to animate rain-drop by rain-drop; our banks send us plots of our incomings
and outgoings in an attempt to persuade us to manage our finances more
responsibly.

Moreover, everyone can now produce their own computer graphics, with
easy-to-use software integrated into word-processors that makes charts and
plots an obligatory element of any report or proposal. More specialist packages
in turn offer complex techniques for higher dimensional data. These used to
be the domain of experts, but without the expert on hand to advise on their
usage we run the risk of using the computer to make clever rubbish.

Visualisation has thus become ubiquitous. As a tool it is powerful but not
infallible; this book will try to give an insight into both facets.

What Is Scientific Visualization?

The discipline of visualization! in scientific computing, or ViSC as it is some-
times abbreviated, is widely recognised to have begun in the 1980s, its birth

! Much early work took place in the USA and the adoption of the ‘z’ spelling, even
in the UK, is a consequence of these origins. The remainder of this book will use
this spelling.
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marked by the production of a key report for the US National Science Founda-
tion (NSF). Interest in visualization was stimulated by the happy coincidence
of a number of factors. Workstations had become powerful enough to display
graphics on the scientist’s desktop and algorithmic developments were making
the treatment of large datasets tractable. Figure 1.1 is typical of the output of
modern scanning equipment that creates many megabytes of data per subject.
Crucially, supercomputers could now run simulations of complex phenomena
and produce more data than could otherwise be assimilated. Figure 1.2 shows
the complicated pattern of flow within a double-glazing panel, computed for
a particular temperature differential across it. The NSF report argued that
continuing piecemeal computer graphics provision was tantamount to a waste
of these compute resources.

Visualization thus owes much to computer graphics but is distinctive from
it. Quite how depends on your view of computer graphics — for some people this
term conjures up scenes of the sort we see in computer games or films about
virtual reality. The aim here is to make the experience seem as real as possible,
whether the scene depicted is imagined or taken from life. The elements used
to draw such a scene — coloured polygons that can be rotated and translated
— are just as much a part of the latter stages of visualization, but the pictures
that are drawn in visualization are of abstract objects that represent data,
not experiences. For others, ‘computer graphics’ will already be synonymous
with the pictorial representation of data but, again, ‘visualization’ implies a
difference in the degree to which the user can intervene. Visualization as it

Fig. 1.1. Modern scanning equipment can create many megabytes of data. Process-
ing and displaying it at interactive rates was one of the challenges identified by the
NSF report. Image credit: IRIS Explorer, test data suite.



Introduction 3

was conceived in the 1980s is thus an interactive process to understand what
produced the data, not just a means to present it.

This Book’s Aims and Objectives

This book aims to give readers a start in the field of scientific visualization.
Someone who works all the way through it (and better still, is able to tackle
all of the problems that are set) will be equipped to choose appropriately
and apply safely a set of basic techniques to some commonly occurring data
types. It also aims to provide a stepping stone to other literature that might
not be immediately accessible to someone new to the subject. In particular
and given its introductory nature, this book does not treat unsteady flows
comprehensively nor does it deal with tensor data.

This book doesn’t intend to promote any particular type of package or
software. Rather, it tries to demonstrate the range of available approaches to
look for when trying to choose a package for oneself or one’s client. As was
mentioned in the Preface, the section on software is by no means exhaustive,
and there are other packages available that are not covered here. The principles
illustrated by means of the software that is described should, however, simplify
the decision-making process when other products are considered.

All of the company and product names mentioned in Sect. 3.3 are trade-
marks or registered trademarks and are hereby acknowledged. Other trade-
marks are noted where they appear in the text.

www

- & w §

o o o o
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W

Fig. 1.2. Computer simulations can be ‘fire hoses’ of data that we cannot hope to
understand without visualization. Image credit: IRIS Explorer, test data suite.
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This Book’s Assumptions

Although this book uses no mathematics itself, the concepts and explanations
will be made easier to grasp by having studied mathematics to GCSE level
or beyond. The book makes no assumptions about visualization or computer
graphics other than as they are experienced by everyone at school. It should
thus be accessible to someone starting out in the subject, but I hope it will
also be interesting to readers who do have advanced mathematical skills and
perhaps have already ventured into visualization. Using a taxonomic approach
I have tried to show relationships between different data types and techniques,
presenting an overview of the subject but treating it as a whole. Readers who
are very experienced in visualization might therefore find the time spent on
1D and 2D data to be excessive compared with 3D, which is where a lot of
the literature tends to dwell.

Who Should Read This Book?

Following its research origins in the 1980s and 1990s, visualization is now be-
coming commonplace; techniques are taught at undergraduate level in com-
puter science that previously were considered specialist or confined to post-
graduate theses. Science graduates are now expected to produce their own
visualizations of complex data, when only a few years ago they would have
enlisted the help of their computer centre or supervisor.

These two groups form the intended readership of this book. Primarily
it is aimed at computer science undergraduates who are taking visualization
as an advanced option. Increasingly (at least, in the UK), AS- or A2-level
mathematics is not a requirement for admission to a computer science or in-
formatics course, hence the lack of a formal approach here which some experts
in the field will find surprising. Those on graphics MSc courses that include
an element of visualization should also find it a useful overview before moving
on to more specialised texts, especially if they have not met the subject as
undergraduates.

Undergraduates and new postgraduates in science and engineering disci-
plines who need to display data as part of a course module or their project
work can also use this book. Although their mathematical skills will outstrip
what is presented here, there are nonetheless important approaches described
that are worth assimilating before moving on to a more challenging text.

How to Use This Book

For someone with no prior experience, this book is best read from one end to
the other (preferably from front to back), though the further reading can be
left until later if time is short. If you have the necessary software, then either
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tackle the problems along the way or return to them chapter by chapter after
first reading all the way through. Do try to tackle them before looking at the
solutions as it is sometimes just as instructive to know why we found a problem
difficult, as to be able to solve it. Unfortunately, looking first at the solution
channels the mind into finding answers, rather than asking questions. If you
don’t have the specific software to support the problems, at least try to get
hold of some software to try out the techniques — a lot of good software of the
various types described in Sect. 3.3.2 is freely available. As the section What
18 Scientific Visualization? describes, understanding data is an interactive
process, so doing visualization whilst reading about it will be far better than
just seeing the words go by.

Those with some experience needn’t read the book cover to cover. Candi-
dates for skipping are the section on software in Chap. 3 and the descriptions
of colour models in Chap. 4. If you are completely confident that you know
what technique applies to what data? then skip Chap. 5. Try to resist the
temptation to ‘dip in’ to Chap. 6 to find out about techniques for higher di-
mensions, without having read the earlier sections there. You might feel it is
all revision, but a number of points are made for 1D and 2D data that are
expanded upon later for 3D. If you are only interested in visualizing vectors
then you can skip to Chap. 7 but might need to look at Chap. 4 to under-
stand the role of colour and Sects. 6.2.5 and 6.3.1 in Chap. 6 if you haven’t
met triangulation.

2 Ask yourself if you know the difference between a surface view and an isosurface.
I find this is the litmus test that tells me what students have absorbed of the
underpinning material.
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Potential and Pitfalls

Any new technology brings both benefits and dangers, and scientific visual-
ization is no different. Chapter 1 hinted at the insights to be gained using
visualization, but there are always risks associated with any procedure that
processes or transforms data. Richard Hamming famously said, “The purpose
of computing is insight not numbers,” but trouble lies in wait for us as soon as
the numbers leave the safety of their data file to be turned into an insightful
visualization. Incorrect assumptions about the properties of the data or its
source, together with the complexities of the human visual system, can lead
us to make representations that might mislead as much as they inform. This
is recognised as a serious issue — for some years now the IEEE Visualization
conferences, a premier forum for researchers in visualization, have begun with
a ‘VizLies’ session, the purpose of which is to alert the community to these
possibilities. An introductory book such as this cannot attempt to catalogue
the diverse cases, successful and not, that appear at such a prestigious gath-
ering. I hope, however, that a few well-chosen examples will serve both to
encourage and to caution.

2.1 Understanding Data

Chapter 1 briefly introduces the notion of scientific visualization, placing it
within the wider context of computer graphics. One factor described there
was the often abstract nature of visualization, compared with the tendency
in computer graphics to try to reproduce realistic scenes, whether imaginary
or not. Although at first sight a contrast, this comparison in fact reveals one
of the reasons why visualization is successful.

In computer graphics we employ various tricks, including perspective pro-
jection, hidden line and surface removal, and possibly stereographic images,
to present a scene that fools our visual system into perceiving a space, or
volume, drawn on the obviously flat computer screen. If, rather than using a
workstation, we look at the scene within a virtual reality headset such that
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our head movement controls the viewpoint, we can add motion parallax to the
list of cues which help us to perceive depth, even though the display in front
of us is really nothing more than an array of coloured dots. Harnessing our
innate understanding of space in order to generate insight into data is a funda-
mental aim of visualization. Unfortunately though, we are three-dimensional
beings who inhabit a three-dimensional space. Our understanding of higher
dimensions, other than the special case of time, is limited, so our visualiza-
tions will fundamentally be restricted to three dimensions, possibly including
animation. If we have more variables to show than can be accommodated
within this limited scope, we must resort to using colour, sound, and, most
recently, force feedback. The next sections show in general terms what to be
aware of when using space, colour, and animation to understand data. The
use of other senses in scientific visualization (sometimes given the more gen-
eral name ‘perceptualisation’) is still a research issue beyond the scope of this
book. Datasets with very many variables are the domain of information visu-
alization rather than scientific visualization and the reader is referred instead
to one of a number of excellent texts that are available on this topic.

2.1.1 Using Space

One facet of understanding space, the cue of perspective, works hand in hand
with an ability to compare the sizes of objects, whether present or remem-
bered. Thus, when we see a familiar object such as a tree on the horizon we use
our general knowledge of trees to attribute its apparently small size to its dis-
tance from us, rather than making the assumption we are looking at a nearby,
but cleverly posed, bonsai. Of course, it might be just that, and we are all
familiar with the trick camera shot of a model village which looks completely
real until someone’s knees appear! When ambiguity is removed though, we
have a strong sense of relative object size, especially if the differences are not
too great. Thus, in Fig. 2.1 we easily see that alternate bars are about half
the height of their fellows but in Fig. 2.2(a) most of us would have difficulty
judging the crop of smaller bars to be about one-tenth of the size of the larger.
This becomes much easier, however, with the help of the gridlines that have
been added in Fig. 2.2(b). Provided differences are distinguishable we also
perceive extreme values readily — in Fig. 2.3 the lowest and highest values in
the dataset are immediately obvious but it requires a moment’s thought to
sort the remainder.

Implicit in this discussion has been a natural tendency to associate greater
value with larger objects and vice versa, without which the discipline of sci-
entific visualization would in any case be a nonstarter. At first sight this is a
reasonable assumption. For instance, I can climb a small mountain one day
and a much bigger one the next; the exertion of getting to the top will ob-
viously be greater on the second day. So far so good, but going downwards
doesn’t convey the opposite by recouping energy — descending into a valley
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Fig. 2.1. Even without a scale drawn on the y-axis, we can easily perceive alternate
bars to be about half the height of the remainder.

I A s Y s N s | 1 [ [ 43
A B C D E A B C D E
(@) (b)

Fig. 2.2. If the bar heights are very different (a), we can use a device such as
gridlines (b) to support our visual measuring skills.

Fig. 2.3. B and D stand out fairly easily as being the lowest and highest values
respectively, but it takes a moment to establish that C is the second to smallest,
then A, F, and E. In fact, A and F are equal, but are probably too distant from
each other for us to decide this with any certainty.
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from my current position will cost nearly as much effort as then climbing back
up to where I started.

This raises the interesting question of what to do about negative numbers
and brings a realisation that, in scientific visualization at least, ‘zero’ is a
somewhat arbitrary concept. Figure 2.4(a) shows a calculation of potential
energy versus distance as two atoms approach each other. Convention equates
the zero of potential energy — where the curve would level out — with infinite
separation of the atoms. However, the framing rectangle, coupled with our
natural tendency to spot extremes of data, leads the eye to the lowest point
of the curve; we might well associate this point with a near-zero value if it
weren’t for the scale drawn on the vertical axis. Figure 2.4(b), on the other
hand, reinforces the crossover simply by adding a horizontal line. Figure 2.5
demonstrates the equivalent effect for a surface view, where the addition of
an axial system serves to confirm that the data fall below some notional but
significant value.

We can gain a deeper sense of the representative power of space and the
objects in it if we look again at the bar chart representation, but now where
the data are plotted against two variables, namely a pet food’s manufacturer
and the region in which sales were recorded (Fig. 2.6). The benefits of this
representation, produced with Microsoft® Excel, are immediately obvious. For
example, it is very easy to see that the declining fortunes of the ‘EasyChomp’
brand are in opposite sense to the improving sales of ‘DoggyGro’. Overall
though, the brands seem each to have a more equal share of the market in the
South East, compared with the South West and North. Interesting insights

10 10
5 5
5 5
5 o
0 0
-5 -5
Distance Distance

(a) (b)

Fig. 2.4. The lack of a horizontal line in the middle of (a) makes it hard to perceive
the curve as flowing above and below the zero value of energy that is, by contrast,
perfectly evident in (b).
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Fig. 2.5. Axes in the horizontal plane emphasise that the values of this surface
lie below zero, in much the same way as the horizontal line in Fig. 2.4 helps to
perceive some parts of that curve are above, and some below, zero. Image credit:
IRIS Explorer, test data suite.

SE

Region

SW

EasyChomp
NwW DoggyGro
Nosher

YummyGrub Brand

Fig. 2.6. Adding a third axis can allow more variables to be compared, but possibly
at the expense of quantitative judgments.
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indeed, but all are essentially qualitative in nature; we would not, from such
a visualization, be able to detect that in the South East sales of ‘Nosher’ were
ever-so slightly ahead of ‘YummyGrub’, even though this is easily seen once
perspective is removed (Fig. 2.7).

Looking at Figs. 2.6 and 2.7 we can see that by introducing perspective
into the drawing we have increased the insight that is available but reduced
its value for making quantitative judgments. This is a trade-off that might
be acceptable in the light of definite benefits, but as a general rule-of-thumb
perspective should be avoided if it is unnecessary to the visualization and
must be avoided if it will mislead. An example is the often-seen ‘overdimen-
sion’ effect used in business graphics. Figure 2.8(a) demonstrates a pie chart
doing a perfectly good job of showing us that ‘KleenCat’ kitty litter and its
competitor ‘SweetNGo’ have equal sales in percentage terms. The same chart
(Fig. 2.8(b)) drawn as a cylinder (presumably to try to justify the unnecessary
use of an elevated, as opposed to an overhead, view) gives us a very different
impression. Here it is equally evident that ‘SweetNGo’ could take on the com-
bined might of both ‘NoPong’ and ‘KleenCat’. Executives at ‘NiffLess’ would
also no doubt be surprised to find out their sales are actually nearly double
those of ‘PrittyKitty’, in spite of what the picture seems to imply. The effect
is quite simple to understand: pie portions in the east and west of the chart
are foreshortened compared with the overhead view, whilst those in the north
and south expand. Furthermore, we saw earlier that to interpret perspective
correctly we rely on our presumed knowledge of the object in the scene. It is
interesting to note that we have little trouble perceiving Fig. 2.9 as a quar-

12 1

10 1

Sales
(o))

YummyGrub Nosher DoggyGro EasyChomp

Fig. 2.7. The same information as appears in Fig. 2.6 for the South East allows
a much more accurate assessment of the brands’ relative sales, once perspective is
removed.
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tered disk, even though its (equal) segments have been subjected to the same
distortion. However, the lack of prior expectations for the irregular object,
combined with the distortion effect, causes our visual system to jump to the
wrong conclusion and interpret the pieces as having incorrect sizes.

NoPong
PrittyKitty

KleenKat ( a)
NiffLess

SweetNGo

NoPong PrittyKitty
KleenKat

(b)
NiffLess

SweetNGo

Fig. 2.8. Whilst an overhead view of a pie chart (a) gives an undistorted impression
of the various brands’ proportional share of the cat litter market, an elevated view
(b) can give quite a different impression.

Fig. 2.9. When dealing with regular portions, however, we somehow manage to
interpret even this elevated view correctly.
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Such mistakes in a representation are obvious and easy to correct, but
the next example shows that perspective can be a more insidious enemy.
Figure 2.10 shows a surface view visualization of a mathematical function
whose value, plotted as height above and below the plane, varies continuously
according to position on the z- and y-axes (across and along the plane). As well
as demonstrating the placement and relative sizes of its main features in the
same way as a bar chart would, the form of this object gives us additional clues
as to the data it represents. Shading gives the object apparent solidity and
helps us to understand just how rapidly the data falls away into the trough.
Highlights cue its curvature — clearly the peak of the function is not circular
in cross-section. Such information is qualitative, though, and to obtain some
quantitative insight we might use a contour plot as well (Fig. 2.11). A fairly
common embellishment to a contour plot is to elevate each line according to
the value it denotes. This can be advantageous if the software allows rotation
of the object since our visual sense can partially reconstruct its underlying
form (Fig. 2.12(a)), but at the same time we may derive some quantitative
information by virtue of a colour key. Look what happens when we view
this object from directly overhead, however (Fig. 2.12(b)). With all hints of a
third axis removed, we interpret this visualization as a flat drawing, but whose
peak and trough are clearly displaced from their correct positions shown in
Fig. 2.11.

Fig. 2.10. The form of an object can give a good understanding of the speed of
variation of the underlying data. Highlights show the curvature of a surface; here
the narrowness of the reflection running towards the peak is a good clue that it is
not circular in cross-section, an impression that would be confirmed as we move the
object interactively. Image credit: IRIS Explorer, test data suite.
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Fig. 2.11. Contours can give some feel for the underlying data and show its exact
value, but only at certain points within the domain. Image credit: IRIS Explorer,
test data suite.
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Fig. 2.12. Elevating contour lines into a type of surface (a) can give some quali-
tative insight and, if colour is used, include some quantitative capability. If such a
visualization is viewed from overhead, however, we perceive it as a flat plane and
the locations of the minimum and maximum appear shifted (b). Image credit: IRIS
Explorer, test data suite.
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2.1.2 Using Colour

Colour is an intrinsic part of most visualizations. Sometimes it is used to
confirm an existing feature of a representation; for example, Fig. 2.10 in its
original form was coloured from blue for the lowest values through magenta
to red for the highest, reaffirming which is the peak and which is the trough of
the object, even when the user rotates the image. The particular colour scheme
— blue to red — is immediately suggestive of cold changing to hot, which is
appropriate in this case because the variable being plotted is temperature.
Had the colours chosen been yellow to green, say, then the user would have
required a conscious effort to interpret their meanings. Colour can also give a
way to add information about another variable without contributing to clutter
in the image. For example, arrows representing the flow of air throughout a
volume can be coloured to give an impression of the air’s temperature too.
This technique is common in meteorology and saves drawing more contours
on the weather map than are absolutely necessary. Another example we will
meet in Chap. 6 is called a height-field plot, where the heights above the plane
indicate one variable and the colours another. This technique might be of use
in geology, where heights could represent the terrain and colour the hardness
of the constituent rock. If this information is presented as intersecting surfaces,
however, the results are very difficult to interpret as each occludes the other
at various points across the plane.

As with the usage of space, though, the use of colour sometimes requires
caution. Apart from the obvious difficulty for certain individuals with anom-
alous colour vision (often — incorrectly — called ‘colour blind’), there can be
pitfalls even for those users whose colour vision is normal. For example, colours
are affected by how an object is lit, appearing darker when in shade and
washed out, or desaturated, where there are highlights. This can be serious
if colour is being used to depict the value of a variable. The effect is more
troublesome with a static visualization such as might appear in a book, but
is less of a problem when the user can interact to rotate the object, since
this moves the shading and highlights around, thereby helping to resolve any
ambiguity. We also need to be aware that visual attention varies with the
particular colour applied to an object together with its surroundings. The
use, and possible abuse, of colour in visualization is sufficiently important to
warrant a whole chapter later in this book.
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2.1.3 Using Animation

Apart from three spatial dimensions, the only other dimension we meet in the
real world is time. Though it is natural to express time as animation, there
are choices to be made according to the goals of the visualization and, once
again, the potential to mislead the user is there.

It is worthwhile to take a moment to clarify terms. In this book the term
‘animation’ is used to indicate movement caused by some procedure or pro-
gram, rather than the user. Movement caused by the user is here termed ‘in-
teraction’, but other authors may refer to this too as animation. Both types
of movement depend on achieving good frame rates in the graphics — interac-
tion accompanied by a jerky response from the object under scrutiny is nearly
as disorientating as hearing your own speech played back to you a moment
after you utter it. By means of a combination of the critical fusion frequency
and our natural tendency to link static images together (beta movement),
different pictures shown faster than about 20Hz will appear to blend into con-
tinuous, flicker-free motion. During interaction the geometry has therefore to
re-render faster than this rate — limiting factors will include the number of
polygons comprising the object and the sizes of any textures that have been
applied. During animation the processing per frame also has to include the
regeneration of the visualization for each new time step, or possibly re-reading
a file of data to acquire the new time step. For large datasets or computation-
ally intensive visualization techniques, therefore, ‘live’ animation might not
be a possibility at all and we then have to resort to other means.

One such alternative is to ‘tile’ the display with the various frames. Fig-
ure 2.13 shows the development over six time steps of the function originally
in Fig. 2.10. In fact, this visualization is simple enough to animate satisfac-
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Fig. 2.13. Individual frames selected from an animation can give some impression
of how a dataset varies over time and might also reveal details in the individual
frames that would otherwise be missed. Image credit: IRIS Explorer, test data suite.
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torily on even a modest workstation, though separating the frames like this
gives an opportunity to look particularly at the form of the peak and trough
as they develop during the simulation. Though not quite the analogue of the
qualitative vs. quantitative insight that was discussed earlier, the effect is
similar because looking at the animation gives an overall impression of the
function’s development, whilst looking at the frames shows small details that
could otherwise have been missed. In an ideal world, therefore, we would aim
to provide both mechanisms for a time-varying dataset.

The visualization in Fig. 2.13 is stationary, and yet it is providing infor-
mation on data from the time dimension. If we now turn this idea on its head
we can imagine a static dataset but whose visualization is animated. This is
useful if the visualization technique can only cover part of the data at any
one moment. Figure 2.14 shows a volume of data coming from a computed
tomograph (CT) of a person’s head. Although there is a technique that tries
to show the whole such volume at once (see Chap. 6), it is computationally
intensive for large datasets. Slices across the volume can give some impression
of the overall variation of tissue density, but the conundrum is that the more
we try to cover all the volume, the less we see because the intervening slices
get in the way. One solution is to have a single slice but to pass it back and
forth through the volume, so that our short-term visual memory can help
reconstruct the whole picture. This should preferably be done with such fine
changes in position that the slice looks to move smoothly, since if it ‘jumps’
then so too will our eyes in following it. Eye movement like this is called a
saccade, and there is evidence that having a saccade occur between images
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Fig. 2.14. Slices showing a greyscale of tissue density are a way of visualizing data
in a volume, but the more slices are included, the harder it becomes to see their
contents. Image credit: IRIS Explorer, test data suite.
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is a good way of hiding changes in detail between them. Another difficulty
in presenting information in this way is more mundane, namely misinterpret-
ing the animation as having come from a time-varying, rather than a static,
data set. This is easily addressed by labelling the display with an appropriate
caption that counts up and down the positions of the slices as they are shown.

2.2 Misunderstanding Data

The previous section talked about how we can harness our perceptual skills
to understand data, together with some of the risks that entails. Throughout
though, there was an assumption that the basic representation was without
fault. There is perhaps a more fundamental problem which we have to solve
first, namely, how to correctly select and execute the visualization itself. The
following two sections discuss this problem in general, but it is one we will
return to throughout the rest of this book.

2.2.1 Using the Right Tool for the Right Job

This old workshop adage is not grammatically correct, but it serves as due
warning for any visualization user who might imagine that it is sufficient just
to put numbers into a drawing package and get a picture out. How many times
on television and in newspapers do we see a line graph of average monthly
share prices such as that in Fig. 2.157 A moment’s thought shows this repre-
sentation is absurd; if we follow the dotted vertical lines we can clearly read off

Average monthly share price

Jul Aug Sept Oct

Fig. 2.15. The y-axis label indicates these are average monthly share prices, so how
can it be possible to read off a value for the first week in August and another for
the last week?
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the share price for the last week in August and find it is different to the price
in the first week in August, even though such variation must have already
been subsumed into the average August price.

Knowing the application is important, because it is in the nature of data
that some sets of points have no inherent order and for others their order is
significant. Furthermore, some data varies continuously and some does not.
Mixing up the different types when choosing which technique to use is one of
the cardinal sins of visualization. Consider Fig. 2.16, which shows the sales
of various manufacturers’ cars at some distant year in the future. There is no
sense in which we can think of an average between, say, Mercedes and Skoda,
so to join up their data points and all the others’ by using a line graph to
represent the data would be nonsensical. This is nominal (or named) data,
represented as a bar (some packages call it a column) chart. Being nominal
data, we could shuffle the bars because this data has no inherent order, though
we might choose to present them a particular way so as to make some special
point. The share data in the paragraph above is subtly different — the average
August price applies to the whole of August, which is why it is inappropriate
to blend it with a little of July’s price at the beginning of the month and a
little of September’s price towards the end. The strictly correct visualization
of this type of data looks like the treads of a set of stairs or the tops of a
battlement (Fig. 2.17), though often a bar chart has to suffice. If we were
to use a bar chart though, we couldn’t expect to shuffle the bars, like we
could with the cars, and still understand what is going on. This is because
September follows August just as surely as thunder follows lightning. In short,
this data is ordinal (its order is important) but is discontinuous (doesn’t join
on) from one month to the next.

The ordering of data is also important when items are counted into ‘bins’,
or ranges, such as the student exam marks in Fig. 2.18. Here they are correctly
shown as a histogram — by definition, each count measured up the vertical axis
applies to the whole of its range measured along the horizontal axis, and when
plotted the bins always reflect their natural sequence.
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Fig. 2.16. Nominal, or named, data requires a bar or column chart for visualization.
Bars can be shuffled but still convey their original meaning.
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Average monthly share price

Jul Aug Sept Oct

Fig. 2.17. The share data of Fig. 2.15 was in reality ordinal but discontinuous,
meaning that the average price for any one month might be very different to its
neighbours, but prices should nonetheless be plotted in order.

20

10

No. of students

|—'_‘—|_

10 20 30 40 50 60 70 80 90 100

Mark

Fig. 2.18. Counts of items in various ‘bins’ or ranges can be shown using a his-
togram, where the count measured up the y-axis applies to the whole of its designated
range along the z-axis.
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2.2.2 The Perils of Interpolation

A common error with histogram data is to assign each count to the midpoint
of its bin and then blithely join the dots (Fig. 2.19). In the case of the student
marks data we find we have stumbled into another pitfall, since students are
often negative but never, in my experience, in number.

Of course, our difficulty in Fig. 2.19 started when we chose the wrong type
of representation for the data. However, even if we have correctly identified
the data as ordinal and continuous from one value to the next, we still have
to take care how we fill in, or interpolate, between the points at which it
has been measured or calculated. Another risk comes if we extrapolate data,
that is, attempt to estimate values beyond those we really know for sure.
Figure 2.20 shows a hypothetical case of a test combustion chamber that is
being monitored at regular intervals for the concentration of a particular gas.
The concentration of gas in the chamber cannot drop below zero nor, since
the chamber is sealed, can it rise above a certain amount. Here, then, are two
risk points in the visualization: if the curve used to join the known data values
is too free-flowing, then it might imply there are negative concentrations at
A; if the curve is continued beyond the data points at B it could rise above
the theoretical maximum within the chamber.

Figure 2.21 shows three very different interpolation methods applied to
one set of data points. Graph (a) uses linear interpolation, (b) uses a piece-
wise monotonic interpolant, and (c) follows a cubic Bessel curve. The names
are unimportant — what matters is the increasing fluidity of the curves in
going from left to right. The first type follows the data closely, but its sudden
changes of direction might not be particularly appropriate to the application.
In contrast the third type, although it has a pleasing appearance, exhibits
plotted values well outside the range of the actual data values. A similar ef-
fect can occur in contour plotting, where the visualization might appear to
have peaks and troughs that are respectively higher and lower than known
maxima and minima in the data. In between these two is a curve that pre-
serves the local maxima and minima of the original data but with less marked
changes of gradient at the data points. The choice as to which to use is not
just an aesthetic one, since visualization may be used to support some key
decision. For example, if these were predicted pest numbers and our goal was
to decide whether and when to spray with insecticide, then we might make
very different decisions purely on the basis of the method used to plot the
curve — clearly an undesirable state of affairs.

We might well ask which of the curves in Fig. 2.21 is correct, to which the
answer is both “all of them” and “none of them”! That is, they all qualify as
valid interpolants because they all pass through each data point as required,
but on the other hand each has been applied arbitrarily without knowing if it
is appropriate. Rather than thinking of this as visualizing the data, we need to
think of the problem as attempting to reconstruct what is underlying the data,
further evidence that it is just as important to know the application as it is to
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Fig. 2.19. Another nonsensical representation, this time obtained by trying to show
histogram data as a line graph.
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Fig. 2.20. Interpolation (such as at point A) and extrapolation (point B) both
present risks in visualization. Here, poor control of interpolation gives us a negative
concentration of gas, which is physically impossible. Extrapolation might likewise
imply there is more ozone than can ever be generated by this system.
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Fig. 2.21. Suppose the horizontal dotted line shows the pest concentrations that
usually trigger spraying. We can see that the three very different interpolants would
lead to different decisions, even though the actual data is the same in each case.
Image credit: IRIS Explorer, test data suite.
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know which techniques we might apply. Regrettably, many plotting packages
do not state what interpolant or other numerical method they employ, leaving
it to the user to make the right decision on the basis of what he or she sees
in the image. If you feel you’re up to the challenge, read on. If not, close this
book now!
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Problems

2.1. Look in a newspaper or magazine for graphical representations of every-
day quantities. Can you identify one example each of nominal and ordinal
data? If the data is of ordinal type, does the quantity that is plotted vary
continuously, is it discontinuous, or is it defined across some range of the or-
dinal data? Can you find any examples where the representation chosen gives
the wrong impression of the data used to generate it?

2.2. Pick up some everyday objects and turn them in the light. What type
of surface do they have (is it matte or shiny, for example), and what does
this tell you about their shape? Are your visual observations confirmed by
touching the object?
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Models and Software

When any new discipline starts out, the initial rush to chart the unknown
is usually followed by a period of reflection and harmonisation. A common
product of this phase is a model or models that try to place some order
on the topic. Visualization was no different; in fact, rather more models of
visualization were probably produced than for most disciplines.

Models are important because they provide a framework for thinking
through ideas. They allow comparisons to be made of different approaches —
in this chapter they will serve as a basis for describing different visualization
scenarios, and for thinking about some common approaches to constructing
software.

3.1 A Dataflow Model of Visualization

As the NSF report mentioned in Chap. 1 stated very clearly, visualization is
intrinsically bound up with scientific analysis, which in turn affords a cyclical
description. The stages to be considered typically begin with mathematical
modelling of the natural phenomenon being studied. Simplifications might
then be made that allow a simulation to be programmed in the computer
and some numerical results generated. These results are next analysed with
the help of visualization. Depending on the outcome of the analysis, previous
stages of the process may be revisited. For example, the visualization might
suggest that the numerical results are not sufficiently accurate, so the simu-
lation is re-run with different tolerances. These new results might, however,
show up a more fundamental problem in the mathematical description, neces-
sitating remodelling followed by reprogramming. The cycle continues either
until a satisfactory explanation of the phenomenon can be found or until the
current approach can be discounted as not creditable.

Breaking down the overall endeavour in this way led to a more detailed
analysis of what constitutes visualization, and ultimately to the two dataflow
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models that are mostly referred to today. These models recognise that visual-
ization as a whole is composed of a pipeline of transformations that gradually
turns raw data into a pictorial representation. Any visualization process can
therefore be written as a directed acyclic graph (Fig. 3.1); changing a vari-
able at any stage in the pipeline causes only this and its dependent stages to
recompute, with obvious benefits in terms of efficiency.

Two broad themes are discernible in these two models’ descriptions: one
deals with the transformations involved and the other with the data each
generates. Thus the first gives us three separate stages of data filtering (or
data enrichment), mapping and rendering, whilst the second furnishes the
derived data, abstract visualization object (AVO), and displayable image that
these produce. Figure 3.2 puts the two themes together into one diagram.

The process begins with raw data entering the filtering stage. In common
parlance ‘filtering’ usually means selective removal, but here the term is used
in its more general, engineering sense, namely to transform data from one
form into another. The alternative term ‘data enrichment’ makes this wider
meaning explicit. Probably the commonest enrichment, especially for raw data
coming from a simulation, is to interpolate between data points at which
values have been calculated. As Sect. 2.2.2 showed, this has to be done with
some care and due regard for the phenomenon being modelled. If data come
from experimental measurements and are noisy, they could need smoothing
before being visualized. Figure 3.3 shows how interference can generate an
electrical signal that fluctuates widely, masking an overall response that, by
contrast, rises gradually and then falls away. Finally, there may be filtering to
produce a lesser quantity of raw data that is otherwise unchanged from the
original. Figure 3.4 shows a CT scan subsampled to one-quarter of its original
density and then reinstated to include all the data. Although visually similar
to a smoothing operation, subsampling is fundamentally different because
data are ignored, not folded in with their neighbours to make new values.
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Fig. 3.1. A directed acyclic graph of processes can represent efficiency gains com-
pared with an application that incorporates all its transformations into one, mono-
lithic structure. In a dataflow application, a change at B will cause E and F to
recompute but not A, C, or D.
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Fig. 3.2. A model of visualization that incorporates the processes of filtering, map-
ping, and rendering in order to transform raw data into derived data, then geometry
in the form of an abstract visualization object, and finally the pixels needed to make
a displayable image.
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Fig. 3.3. Smoothing experimentally measured data (solid line) may reveal an un-
derlying trend (dotted) not evident in the individual values themselves.
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Fig. 3.4. Subsampling data can make a large dataset easier to manipulate in the
early stages of investigation, reinstating all of the data in order for final conclusions
to be drawn. Image credit: IRIS Explorer, test data suite.
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After filtering to produce derived data comes the mapping stage to produce
an AVO. An AVO is an imaginary object with attributes such as size, colour,
transparency, texture, and so on. Data is mapped to these attributes in order
to represent it visually. Thus temperature might control the colour of the
object, ranging from blue for cold through to red for hot; sales of cars might
determine the length of bars in a chart. The particular object into whose
attributes data are mapped depends on the visualization technique that is
chosen, which in turn depends on the type of data being investigated. How to
classify data in order to choose a suitable technique is the topic of Chap. 5.
In general, though, there is no one-to-one mapping of technique to data, nor
of data to attributes, so the experimentation that occurs is this stage is a
defining characteristic that sets visualization apart from data presentation.

The final stage is to render the AVO into a displayable image. Here the
object might need to be rotated, translated or scaled; it could be viewed
with perspective or have other depth cues applied. As Sect. 2.1.1 described,
the form of the object can give clues about the data it represents, so the
application of lighting is another important aspect of the rendering process.

3.2 Visualization Scenarios

The dataflow model has been very useful in describing extensions to the orig-
inal paradigm; amongst them are computational steering, distributed visual-
ization, and collaborative visualization.

3.2.1 Computational Steering

One of the stated aims of visualization in the NSF report was to enable the
steering of simulations. Until that time, scientists had carried out their investi-
gations by submitting large compute jobs to remote facilities and viewing their
output some time later, once the calculation had ended. Regrettably, a quite
common finding was that some parameter or other had been mis-specified and
the output was useless. Steering aimed to relieve this problem; by seeing the
output whilst it was being generated, a job could be halted if going awry, or
even have its course corrected by changing a parameter between individual
steps of the simulation. Figure 3.5 shows the explicit inclusion of a ‘simulate’
process into the filter-map-render pipeline. Thus the input to the filter stage
is still raw data but now it is being produced on-line for immediate visu-
alization. The simplicity of this diagram belies the difficulty of making this
idea work; programs constructed originally for a ‘numbers in, numbers out’
approach sometimes need a complete overhaul of their architecture in order
to be steered. There is also the problem of how to record the progress of the
scientist’s interactions, since sometimes the best solution is not immediately
evident, requiring a roll-back of the experimentation.
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A number of attempts at computational steering were made soon after
the publication of the NSF report but it has recently experienced a revival of
interest — Chap. 8 contains further details.

3.2.2 Distributed and Collaborative Visualization

A knowledge of what is flowing between each stage of the dataflow pipeline
provides a convenient means to describe distributed visualization. Early at-
tempts at client-server visualization tended to serve pictures, in other words,
virtually the whole of the pipeline was running on the server and the local
machine had only to display the pixels, sent in some standard image format
(Fig. 3.6(a)). As web browsers became available that could handle the virtual
reality modelling language (VRML), it proved possible to move the client-
server dividing line further back (Fig. 3.6(b)). VRML allowed the communi-
cation of three-dimensional data and gave the client the flexibility to render
and interact with the object as they pleased, rather than simply looking at a
static image.
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Fig. 3.5. A model of visualization that incorporates the simulation process, as well
as filtering, mapping, and rendering. The simulation’s output is visualized as it is
produced, so that the computation can be halted or changed according to what is
seen in the results.
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Fig. 3.6. A model describing client-server visualization. In (a), virtually all of the
pipeline runs on the server that is left of the dashed line and the local software need
only display images. In (b), geometry in the form of VRML or its successor X3D is
served, and the user of the client software can choose their own rendering operations
to apply locally, rather than have these dictated by the server.
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Closely bound up with distributed visualization is collaborative visualiza-
tion, where two or more geographically distributed users work together on
a shared problem. Depending on which aspects they share and which they
keep separate, more or less of the pipeline might need to be distributed. For
example, a case where one worker controls all of the data and processes whilst
the other just looks at the images will seem to the second user very like the
pipeline in Fig. 3.6(a). At the opposite end of the spectrum we could imagine
sharing at the application level, with each person’s display, mouse movements,
and button presses being transmitted to the other. Figure 3.7 shows a scenario
somewhere in between these two. As in the diagrams of distributed visualiza-
tion, the dotted line indicates the boundary between two networked machines,
this time allocated one per user. In this instance the raw data remains private
to the user of the upper pipeline, whilst the derived data (the output of the
filter stage) is shared with their colleague, operating the lower one. The two
workers use different mapping and render processes (the lower pipeline has
primes to indicate this) but they share their AVOs. The overall result is that
each user has a different image but of the same geometry.

Just as in computational steering, these architecture diagrams hide some
complex implementation details. In distributed visualization the challenge on
the server side is to develop parametrised, batch versions of software that was
originally intended for interactive use. Communication between server and
client is also an issue, since it involves transmission, via an external medium,
of data that would normally remain confined within a single visualization
program. In collaborative visualization there are likewise decisions to be made
concerning the transmission of data: should this be transferred from peer-to-
peer or via a central server; are late-comers to the collaboration to be sent
the shared elements automatically or only with the consent of their peers?
There is also the issue of overall control: is there to be a concept of one
user ‘taking the floor’ during the interaction, during which time the others
must watch passively; if there is no floor protocol, how will the system deal
with simultaneous actions by the different participants? Chapter 8 once again
contains suggestions for further reading.
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Fig. 3.7. In collaborative visualization two or more users can work on a shared
problem. Here they are each looking at the same derived data, but using their own
preferred visualization technique and sharing its output.
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3.3 Visualization Software

The dataflow model described above can be used to describe any software
that transforms data into a visual representation, but it has also been used
in the interface design of a particular type of visualization toolkit known as
application-builder software, or modular visualization environment (MVE).
This section first charts the driving influences in the development of this and
other types of visualization software and then goes on to discuss some present-
day examples.

3.3.1 Historical Context

In MVEs, filter, map, and render facilities are provided as a set of modules
that the user connects together in a workspace, using visual programming, or
drag-and-drop editing. As data passes through each module it is transformed
in some way and flows to the next in the pipeline. The final module the
transformed data encounters is a render process that displays it.

A number of systems using this visual programming paradigm first ap-
peared in the late 1980s and early 1990s: apE, originally an abbreviation of
‘animation production Environment’, developed by the Ohio Supercomputer
Graphics Project (OSGP) at the University of Ohio; the Advanced Visualiza-
tion System (AVS) originally developed by Stellar Computer; IBM Visualiza-
tion Data Explorer; IRIS Explorer originally a product of Silicon Graphics,
Inc (SGI); Khoros from Khoral Research, Inc, University of New Mexico.

Coincidentally, the first two in this alphabetical list are recognised as the
forerunners of this genre, though all five were established players by the mid-
1990s. MVEs were not the first software systems on the visualization scene,
however, but an innovation that tried to balance the ease-of-use of ‘turnkey’ vi-
sualizers with the flexibility provided by traditional programming approaches.
Turnkey visualizers aimed to provide an appropriate visualization with little
or no prior learning or customisation, but could be restrictive in their capa-
bilities. Programmed solutions, on the other hand, gave ultimate flexibility
but at the cost of software development. By adding modules to an MVE the
system’s functionality could be extended beyond that originally envisaged,
providing some flexibility; visual programming required users to construct
their own applications but without the need for low-level coding, providing
some ease-of-use. Flexibility and ease-of-use were thus seen as two largely
opposing scales, with turnkey approaches and traditional programming at op-
posite ends of the spectrum and visual programming somewhere in the middle
(Fig. 3.8).

3.3.2 Current Approaches

In the early days of visualization software Fig. 3.8 gave a fairly accurate
description of individual offerings; nowadays, however, a single product rarely
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occupies just one position in the spectrum. Software developers realise that
for their package to appeal widely they must strive to include features that
will give the best of all worlds in terms of its flexibility and ease-of-use.

A discussion of some currently available software will serve to illustrate,
but the same analysis can be applied to any of the many software packages
on the market or available to download for free. For example, Tecplot from
Tecplot, Inc presents users with a mouse-operated Workspace in which it is
very easy to select 2D, 3D, and animated visualizations of data. The same
Workspace can, however, be extended to include new functionality written
in a language such as C++. This new functionality, termed an ‘add-on’, in-
tegrates seamlessly as if part of the standard software, giving a tool that is
flexible from a developer’s point of view but remains easy for the client to
use. The Interactive Data Language (IDL) from Research Systems, Inc is a
command language with an extensive and extensible library of data access, nu-
merical and visualization routines. This fulfills the requirement for flexibility,
whilst the “iTools”, a set of pre-built interactive utilities, provide ease-of-use
that is more typical of a turnkey visualizer. PV-WAVE from Visual Numerics,
Inc is also a command language with considerable power and hence flexibility,
though many of its users will know it via its Navigator interface, which gives
ease-of-use via its interactive point-and-click visualizations. For those wanting
to program in a general-purpose language, the Visualization Toolkit (VTK)
from Kitware, Inc is a C++ class library. This powerful resource is therefore
available to anyone with a knowledge of C++ and, by means of language bind-
ings, to programmers in Java, the Tool Command Language (Tcl), or Python.
Ease-of-use for non-programmers is catered for by the Parallel Visualization
Application (ParaView), a large-data turnkey visualizer built on top of VTK
which can therefore draw on its functionality. As can be seen from this analy-

2| Langwage programiing |3
5|  Visual programming  |g
¢
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Fig. 3.8. A visualization solution programmed for a specific purpose (top) could
be made to fulfill virtually any requirement but at the expense of writing, testing,
and debugging it. In contrast, turnkey visualizers (bottom) were written with gen-
eral requirements in mind for a variety of subsequent uses and therefore might not
suit everyone’s needs precisely. Application builders (centre) tried to simplify the
construction of a range of solutions by means of their visual programming interfaces.
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sis most visualization software, though it may have a primary locator on the
spectrum, will also include characteristics from either side and, sometimes,
from the furthest extremes of the scale.

The gap targetted by the original MVEs may therefore have closed some-
what, but that has not rendered the principle or its products redundant; vi-
sual programming remains a popular paradigm. Systems using this approach
have continued to appear including, amongst others: Amira from Mercury
Computer Systems, Inc; the COllaborative VIsualization and Simulation En-
vironment (COVISE) from Visual Engineering Solutions (VISENSO) GmbH_;
SCIRun (pronounced “ski-run”) from the Scientific Computing and Imaging
(SCI) Institute at the University of Utah; and Yet-another-COVISE (YAC)
from the High Performance Computing Center, Stuttgart (HLRS).

Of the five original dataflow MVEs one, apE, has fallen by the wayside
but four are in continuing development: the Advanced Visualization System
(as AVS/Express) is now a product of Advanced Visual Systems; IBM Vi-
sualization Data Explorer has become the Open Visualization Data Explorer
(OpenDX); IRIS Explorer is now developed and marketed by the Numeri-
cal Algorithms Group (NAG) Ltd; Khoros has become the VisiQuest system
from AccuSoft Corporation. Refinements variously made to these systems
since their first appearance include: data referencing to replace the copying of
data from one process to another; coercion of several modules’ functionality
into a single process; the inclusion of loop and control constructs allowing
more powerful programs to be constructed; customisation of the system’s ap-
pearance without recourse to low-level programming; and, hiding the evidence
of visual programming behind an interface that looks more like a turnkey.

Choosing between software today is therefore not so much an issue of de-
ciding whether a product is a turnkey, is an application builder, or uses a
programming language and library, but determining where its emphasis lies
and how this fits with requirements. Three key questions to ask are, is the
exposure (such as occurs in visual programming) of the underlying framework
of benefit to the application and its users; does the software provide the nec-
essary techniques and, if it doesn’t or these are not yet known, is it extensible;
and, most importantly of all, is it likely to be usable by the target audience?
Easy questions — not always easy answers.
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Problems

3.1. Type “visualization software” into an Internet search engine and choose
one of the many pages that describe a commercially available or open source
software product. To what extent does your chosen subject look like a turnkey,
application builder, or programming language and library? Does it have fea-
tures from different parts of the spectrum, or are there complementary prod-
ucts that use it and extend its classification? If the product is commercial,
are all the features available for a single payment or must they be purchased
separately?

You may have to search ancillary information such as case studies and
documentation in order to answer fully. Make notes as you go along to assist
in summarising your research.

3.2. Think about a potential client with a visualization problem, such as your
employer or lecturer. Would the person you have chosen require some general-
purpose package or software tailored to a particular need? Would he require
easy-to-use software or could he master traditional or visual programming?
The answers to these two questions sometimes reveal conflicting requirements:
if your client requires tailored but easy-to-use software, is anyone available
to do the customisation or would this incur additional purchase costs, for
example for consultancy charges?

Now think about several clients such as your office colleagues or the staff
on your course. Does this change the type of software you would procure?
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Colour in Scientific Visualization

Unlike the qualitative use of colour in computer graphics, where the aim is
generally to add realism to a scene, in scientific visualization colour is more
likely to convey quantitative information. Colour thus acts as an additional
degree of freedom, usually used when the three spatial dimensions that we can
readily perceive have already been allocated to data. This special requirement
to represent numerical data makes it necessary to understand what constitutes
colour and how it is perceived, and to have an idea of its potential and limi-
tations.

4.1 The Electromagnetic Spectrum

Most books covering colour begin with a diagram of the electromagnetic spec-
trum — the relatively small portion occupied by visible radiation (light) is in-
deed noteworthy, as is the realisation that such diverse phenomena as X-rays,
light, and radio are all comprised of the same coupled electric and magnetic
fields, only with very different wavelengths. Figure 4.1 plots the key players,
from gamma rays to medium/longwave radio. As far as is possible within the
accuracy of the drawing, the vertical distance occupied by the thick black line
corresponds to the actual wavelengths of light that we perceive as violet (at
shorter wavelengths) through to red (longer wavelengths).

It is surprising, then, that our rich perception of the world around us can
come from such a tiny piece of the scale. Even more so is the realisation that
the scale itself is logarithmic, that is, equal distances are assigned not to the
numbers, but to the power of the numbers, in this case with a base of ten.
Thus 103 = 1000 is the same distance along the axis from 10% (100) as 100
is from 10. This makes the differences in wavelengths truly staggering. Waves
of visible light, at just 100s of nanometres long (1 nm = 10~?m), are small
enough to pack about 2 million into every metre, whereas the ones that bring
in the breakfast show each morning are the same order of size as the room
you eat breakfast in.
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4.2 Colour Perception

Colour vision is not a capability possessed of all sighted creatures, many of
which are only sensitive to the intensity of incoming light. Perception of colour
is based additionally on a sensitivity to the frequency of the light, which is
inversely proportional to its wavelength. The problem for early researchers
was to propose a mechanism that could allow us to see many different colours
but without requiring there to be an equivalent number of different receptors,
each ‘tuned’ to some particular colour. The now-accepted theory, termed the
tristimulus theory, is that there are just three types of colour receptor, each
of which is stimulated preferentially by long-, medium- or short-wavelength
light. When light of a particular wavelength falls on the retina, the different
receptors, or cone cells, respond in differing degrees. Their combined signals
are interpreted as a sensation of a single colour. Although these different
receptors in fact each respond over a range of wavelengths they are often for
convenience given the names ‘red’, ‘green’ and ‘blue’ cones.

Figure 4.2 shows the peak cone sensitivities of an individual with normal
colour vision, relative to the full range of colours. The most common forms of
anomalous colour vision concern the red and green (bottom and middle) cones,
rather than the blue (top). For someone with a deficiency in the red system,
one explanation is that this response curve is shifted up towards the green.

Shorter
Gamma rays 107
X-rays 107
Visible light 107

400 (violet) to

700 (red) nm
Wavelength (m)

Microwaves 10°
FM radio 1
AM radio 3
10
Longer

Fig. 4.1. The electromagnetic spectrum covers radiation as apparently diverse as
gamma rays, light, and radio waves, but in fact these comprise the same coupled, os-
cillating electric and magnetic fields. 1 nm = 10~ °m. Data sources: Open University
Science Data Book and the BBC web site.
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For someone with a corresponding deficiency in the green system, the peak of
the green curve is presumably shifted down towards the longer wavelengths.
Since in either case the normal separation of the response curves is reduced,
both types of anomaly result in a reduced range of colours being distinguished
in the part of the spectrum normally seen as red blending through orange and
yellow to green. The actual degree to which colours appear similar depends on
the extent of the anomaly — some people are unaware they have any deficiency
until subjected to a specialised colour perception test. The third type of colour
deficiency involves the blue cones but is much less common than the other two.

True colour blindness, that is, where someone has no functioning cone cells
and therefore cannot distinguish any colours, is extremely rare. Referring to
someone with anomalous colour vision as ‘colour blind’ thus doesn’t tell the
whole story, since some range of colours is seen. This will be a restricted range,
though, and the consequences of this for scientific visualization will be touched
on later. It is also not particularly illuminating to ask how a particular colour
is seen by someone with a colour vision deficiency, for example, whether red
appears as beige or orange. Whilst these are different colours to someone with
normal colour perception, to someone without it they might just be different
labels apparently arbitrarily applied to the same thing. Ultimately we can
never determine what anyone, anomalous or not, experiences from any par-
ticular colour. We all, including people with colour anomaly, know that grass
is green only because we are told so when young, and we come to associate

400 - Violet
Blue
500 —+
Green
600 —+ Yellow
Orange
700 —— Red
Wavelength Perceived Peak Cone
(nm) Colour Sensitivity

Fig. 4.2. Cone cells in the retina are preferentially sensitive to certain wavelengths of
visible light but respond across a wide range. Thus most colours, with the exception
of blue and red at the extreme ends of the spectrum, are sensed by a mixture of
responses. Note that, in contrast with Fig. 4.1, this plot follows a linear rather than
a logarithmic scale.
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the sensation of looking at grass with the colour we subsequently call ‘green’.
When we then look at another object that evokes the same sensation we give
it the label ‘green’; too. Colours that evoke that same ‘green’ sensation for
someone with colour anomaly might, however, look different to someone with
normal colour vision and thus usually be given a different colour label. This
distinctiveness, or lack of it, of different colours is the principle behind the
colour plate tests that appear to show a number to a subject with normal
colour vision and no number, or a different number, to someone with a defi-
ciency.

4.3 Modelling Colour

The problem of how to produce colours for computer graphics is in some
ways the converse of that presented to early researchers proposing a theory
of colour vision. Whereas in colour vision there was a need to understand
how so many colours can be seen without having equally many receptors, in
output device engineering we have to give the appearance of many colours but
without having light emitters tuned to every required frequency. Of course,
the tristimulus theory comes to our aid here, because if we can sense many
colours with three receptors, it follows that adding together three primary
colours of light should do a fair job of simulating the many in between. This
was Thomas Young’s discovery and is the principle on which televisions, data
projectors, liquid crystal displays (LCD), and the like are all based, emitting
light at just three wavelengths chosen so as to cover the visible spectrum as
best we can.

4.3.1 RGB Colour Model

Red, green, and blue are the primary colours used in such devices. Physically
this may be achieved in different ways: a television has three types of phos-
phor in its screen that each emit light of a different wavelength when struck
by a beam of electrons; LCDs have an array of coloured filters that give the
light coming from each pixel a separate red, green, and blue component. Re-
gardless of how the emission is accomplished, the RGB colour model applies
to any device that generates colours by this additive process (Fig. 4.3). This
model has three orthogonal axes along which the contribution of the different
components are plotted, zero being equivalent to no output of that primary
and 1 (or 255) signifying the maximum. Off-axis points correspond to colours
that are seen by mixture, thus for example (1, 1,0) corresponds to yellow and
(0,1,1) to cyan. White (= (1,1,1)) and black (= (0,0,0)) are at opposite
corners of the resulting cube, connected by a line of greys. Complementary
colours, i.e. those which sum to white, can be found by reflecting any point
on the cube through its centre.
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The colour model is an abstract description; it cannot, for example, say
precisely what (1,1,0) will look like, because it makes no reference to the
particular wavelengths of the primaries used. Moreover these wavelengths need
not (and typically do not) match the peak cone sensitivities seen in Fig. 4.2 and
where standards have been defined for certain devices, these may have changed
over time. As Thomas Young discovered, the choice of wavelengths is quite
wide provided there is reasonable separation. Different choices of primaries
do, however, affect the proportion of all the visible colour combinations that
can be reproduced by the particular device. The subset of colours that can be
produced by any one device is termed its colour gamut.

4.3.2 HSV Colour Model

RGB is a useful model when describing how colours are produced by a com-
puter monitor — roughly speaking, turning up the voltage on the electron gun
assigned to, say, the red phosphor moves the colour’s coordinate in the cube
parallel to z and in a positive sense, whereas turning it down translates the
point in the opposite direction. It is less useful for defining a colour intuitively:
how many people would be able to quote the RGB values that would make

0.1,0

01,1

0.0,1

1.0,1

Fig. 4.3. The RGB colour model plots the contribution of each primary along the
corresponding axes, which together form three edges of a cube. Red, green, and blue
are respectively denoted (1,0,0), (0,1,0), and (0,0, 1); their complementary colours
cyan, magenta, and yellow are the mixture colours (0,1,1), (1,0,1), and (1,1,0)
found on the opposite vertices. Black, at the origin of the cube (= (0,0,0)) and
white (= (1,1,1)) are joined by a body diagonal (shown dotted) comprising shades
of grey. Points along this line all have R = G = B.



42 4 Colour in Scientific Visualization

their monitor emit coral pink?' If we think of RGB as useful for engineering
the production of colours, then what is needed is a corresponding model that
can describe them conveniently.

Perceptually we can think of a colour in terms of its named hue, such as
yellow or green, and then additionally how pure a tint or how dark a shade it
is. Figure 4.4 shows the inverted-cone colour model based on hue, saturation,
and value, that allows just such a description. Hues vary according to the
angle of rotation around the cone’s axis, whilst saturation denotes how pure a
colour is. Saturation is least along the central axis and greatest (purest) on the
sides of the cone. ‘Value’ describes how dark a colour is and is least (darkest)
at the point of the cone and greatest on its (upward-facing) circular base.
The cone can thus be visualised as a circular disk of full-value colours sitting
atop a sequence of progressively smaller and darker ones, culminating in a
black point at the tip. This is how the model is often presented in computer
graphics applications, namely as a colour wheel corresponding to the top of
Fig. 4.4 together with a slider to vary the vertical coordinate.

Like RGB, the HSV model is additive; indeed, the two models are linked
mathematically such that any colour specified in one can be transformed into
a description in terms of the axes of the other. We can see the basis of this
link by standing the RGB model on its black vertex and looking down. In this
orientation the colours on the hue disk correspond to the hexagon of colours
outlined by the vertices of the RGB cube (Fig. 4.5), whilst the line of greys
in the cube matches the central axis of the HSV cone.

1T do in fact know someone who can do this, but he freely admits he has been
working too long in computer graphics.
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Fig. 4.4. The HSV colour model consists of a disk of colours that are fully saturated
on the rim and become gradually less pure towards the centre, which is white. The
concentric rings thus show the positions of colours of different hue but the same
saturation. Colours become gradually darker (decrease in value) as the black point
is approached. As in Fig. 4.3, the dotted line comprises shades of grey.

Cyan Green

Blue Yellow

Magenta Red

Fig. 4.5. Looking directly down the line of greys in the RGB cube reveals a hexagon
whose vertices correspond to the colours seen around the HSV colour disk.
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4.3.3 Relating RGB and HSV

Figure 4.6 demonstrates graphically the conversion between these two models.
In (a), the arrows depict the axes of the RGB cube, within which two square-
shaped surfaces have been plotted. The one on the back faces of the cube is
for saturation set at its maximum, 1, and the one projecting into the body
of the cube is for value set at 0.5. Since all points on these two surfaces
respectively have S = 1 and V = 0.5, it follows that, on the line where they
intersect, each colour there must also have both S = 1 and V = 0.5. Choosing
a particular hue narrows down the line to one point, i.e., one colour. Hue
starts at the line drawn on the value surface and sweeps round anticlockwise
in the direction of the arrow. Red is by convention at H = 0, so the indicated
point’s coordinates in the HSV model are (0, 1,0.5), which we would call dark
red (Fig. 4.6(b)). Now, looking once more at the position of the point in
the RGB model (Fig. 4.6(a)), we can read off its coordinates as (0.5,0,0),
which corresponds to red at half power and no green or blue component.
Decomposing this colour into two parts gives a clue why it corresponds to
dark red, since (1,0,0)/2 4 (0,0,0)/2 = (0.5,0,0), the colour we are looking
for. This equation says that if we mix equal amounts of red and black we get
dark red, which is what we would expect intuitively. It must be remembered,
though, that here we are mixing lights not paints, so ‘black light’ is just
synonymous with ‘no light’.

The remainder of Fig. 4.6 shows the derivation of pale green. Green, at
H = 0.33, is one-third of full-circle distant from red at H = 0 so its coordi-
nates in the HSV model (d) are (0.33,0.5,1). In (c), the cone-shaped surface of
saturation is for S = 0.5 and the three-sided surface shows ‘value’ at its maxi-
mum, 1, so reading the indicated point’s coordinates in RGB gives (0.5,1, 0.5).
Decomposing as before we get (0,1,0)/2+(1,1,1)/2 = (0.5,1,0.5), the colour
we are looking for. From its constituents we can thus say that pale green is
made from equal amounts of green and white, as we would expect.

So, with no pun intended, can this method be used in reverse to shed light
on coral pink? First we must think about the colour itself — pale reddish-orange
is perhaps the closest simple description — (1,0,0)/2 + (1,1,0)/4+ (1,1,1)/4
combines red and yellow in the proportions 2:1 and adds some white. Given the
approximate nature of this calculation, our result of (1, 0.5,0.25) is remarkably
close to the value (1,0.5,0.3) that defines this colour in computer drawing
and graphics applications. For user interface work, therefore, it is common
to find that colours can be specified intuitively using their hue, saturation,
and value, with the program then performing the conversion to RGB so that
the device can output the required amounts of the three primary colours.
In scientific visualization, however, mapping colours to data is done using
whichever model yields the simplest description — some examples in the next
section will illustrate.
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Fig. 4.6. Relating the RGB and HSV colour models. (a) and (b) show the derivation
of dark red; (c) and (d) show the derivation of pale green. A surface of constant value
always has a square shape but grows larger and moves further from the RGB origin
as value increases. This surface is shown carrying lines along which hue is constant
— these lines circulate anticlockwise with increasing hue when looking towards the
RGB origin. A surface of constant saturation is a six-sided cone that grows wider as
S increases. At S=1, adjacent pairs of sides become co-planar and the cone assumes
a square shape reminiscent of the value surface. In all cases the point of the cone is
located at the RGB origin.
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4.4 Mapping Data to Colours

Having looked at two colour models that are in common usage, the task of
mapping data to colours becomes one of finding a line or curve within one
of these shapes along which data can be distributed from its minimum to its
maximum value. A look-up table can then be used to colour the AVO, mirror-
ing the variation of the data value assigned to this attribute. The distribution
of data along the chosen line or curve is termed a colour map and it can be
linear, that is, equal distances along the line correspond to equal increments in
data value, or nonlinear. Nonlinear colour maps occur for highlighting tasks,
where the aim is to pick out a particular subrange of the data. Linear colour
maps occur where the aim is to demonstrate a variable crossing over some
significant intermediate value, or to discover the value of a variable at some
point(s) on the AVO.

If the task is in some sense to measure data, then complications can arise
because, although the colour map may be linear in terms of its construction
within the colour model, the same is rarely true of our perceptual response to
it. Whilst a model such as HSV allows colours to be described in perceptual
terms, we should not make the mistake of assuming it is therefore perceptually
uniform. The most striking evidence for this is the colour wheel itself. If the
portion corresponding to hue ranging from about 0.16 to 0.5 is mapped linearly
to data, narrow bands of yellow and cyan are seen at either end, separated by a
much broader band of green (Fig. 4.7). This effect has its roots in the way our
cone sensitivities span the wavelengths in the visible spectrum (recall Fig. 4.2).
A colour map constructed like this results in good data discrimination at its
extremes, but a large number of values in the middle will seem to be equal.
The overall effect is thus nonlinear, even though functionally the colour map
is linear. This and similar problems could be alleviated by constructing colour
maps within a perceptually uniform colour space. These do exist but are rarely
found in off-the-shelf visualization tools. Practically, therefore, we have to use
models like the ones already described, but with a degree of care. We also
have to be aware how anomalous colour vision might affect perception of the
chosen colour map. The remainder of this section thus shows some basic colour

Green Yellow
0.16
Cyan Vs Red
Blue Magenta

Fig. 4.7. Regions of good hue discrimination (narrow-angle segments) on the colour
wheel alternate with portions where many hues appear similar (wide-angle).



4.4 Mapping Data to Colours 47

mapping strategies, then looks at some perceptual effects and colour vision
deficiency.

4.4.1 Nonlinear Colour Mapping

Figure 4.8(a) shows a colour map that varies in hue from green corresponding
to the data minimum, through cyan to blue at the data maximum. Although
the increments on the data scale are all roughly the same, we see that four seg-
ments map to each of green and blue, whilst only two segments map to cyan.
The visual effect is shown in Fig. 4.8(b), where it is clear that this colour map
will highlight data values around the mean, in the particularly visible colour
of cyan. Remaining values, however, will only broadly be distinguished as be-
low (green) and above (blue) this mean. Figure 4.8(c) and (d) demonstrate a
similar aim, but now where only values at one end of the data range are of
particular interest. This colour map can therefore use a single hue plus a value
or saturation variation. Here, the chosen hue is red and saturation varies non-
linearly so as to pick out unusually high values of the variable being studied.

Data max

Green Cyan Blue
<mean >mean
~mean
(@) (b)
Data min
White Red
« >« >

<max ~Mmax

© (d)

Fig. 4.8. Nonlinear mappings. (a) and (b) show a nonlinear mapping of hues from
green to blue that allows values around the mean to be highlighted. (¢) and (d)
show a nonlinear mapping of one hue from very pale to fully saturated that allows
unusually high values to be highlighted.
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So where might these types of colour map be used? The first type is used
where data points clustered around some special value are of particular in-
terest, and others need to be distinguished but their precise value is not an
issue. Visualization of product tolerances falls into this category: those arte-
facts meeting the acceptance criteria fall into the cyan band and are very
obvious; others falling above and below are discounted and their particular
value is not important because they will be rejected anyway. What is impor-
tant, namely the proportion that are above and below the required tolerance,
is captured by the colour map because this might give a clue how to alter the
production parameters in order to increase usable yield.

The second type of colour map will find extreme values. For instance,
particularly high flow rates in a river system might show regions that are
prone to scouring of the bed. Giving unremarkable colours (here, white) to all
the other, more acceptable, data values concentrates attention on potential
problem areas.

4.4.2 ‘Linear’ Colour Mapping

Measurement tasks in visualization differ from the highlighting tasks of the
previous section, since the aim is to show a progression of data values through-
out the range, rather than to single out some portion of it. With this aim in
mind, choosing a colour map that increases in saturation or value will naturally
support a perception of increasing data value, conveyed by the progressively
purer tints or lighter shades of the colour map (Fig. 4.9). The same is not
true, however, of hue. Although hue increases from 0 to 1 within the HSV
model just as value and saturation do, increasing hue gives us the sensation
of seeing a new colour, rather than seeing a colour that is intrinsically ‘worth
more’ than the previous one. This inability immediately to quantify hue has
given rise to mnemonics such as ‘Richard Of York Gave Battle In Vain’ to
help recall the sequence of colours. In visualization the equivalent would be to

S-varying

Data min Data max

v

d0<d'| <d2< d

Data min

Fig. 4.9. Varying value or saturation will naturally convey a sense of one data value
greater than another, though the same is not true for the hues, whose sequence
generally has to be learned via a mnemonic such as ‘Richard Of York Gave Battle
In Vain’.
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provide a colour legend (and this is always good practice, no matter what vari-
ation is chosen), but the inference of a data value that is mapped to hue will
always involve an interpretation step that is largely not needed in saturation-
or value-varying schemes. For this reason, even leaving aside the perceptual
nonlinearity shown in Fig. 4.7, hue-varying schemes with large numbers of
colours should be avoided if the aim is to quantify data, though the many
hues will give an overall impression of regions of change if that is all that is
required.

Whilst many hues within a single colour map are best avoided, mapping
data to smaller hue variations can be quite successful, though only in those
regions where our hue discrimination is good (recall Fig. 4.7). If the hues
chosen are not particularly suggestive of the variable being displayed then it
will still be necessary to learn the sequence, but recalling the order of, say,
three hues is much easier than when there are six or seven. As always, a colour
legend will support the association until it is memorised sufficiently to make
the interpretation step transparent to the visualization user.

A special case of a hue-varying colour map is shown in Fig. 4.10, which
demonstrates blending from one hue to another via the line of greys. The
middle point, where hue is undefined, is used to signify a cross-over, and
increasingly saturated colour demonstrates the ‘distance’ a value lies from this
point. In this example the base hues are red and blue, with a constant green
component to take the line through the cube diagonal. It is thus convenient
to construct this colour map using RGB parameters (a), rather than HSV
as the examples so far have done. As always, though, there is an equivalent
description using HSV, but it appears a little more complicated (b) than the
single straight-line representation that the RGB model affords.

0.1,0
T 1,1.0
0,1,1
Sky t?lue Orange
Data max
Data min Data max
Data min 3 Grey
1,0,0
0.,0,1
1,01
(a) (b)

Fig. 4.10. Every colour map will have an equivalent description in terms of RGB
and HSV, but may be simpler to construct using one rather than the other set of
parameters.
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Such a colour map is used to denote values above and below zero or some
other, especially significant value. This particular combination of colours is
suggestive of a temperature variation below and above ambient, since it is
natural to associate blues with cold and reds with hot. Although exactly
the same variation could have been achieved with a different hue pair, such
as green and magenta, the association with hot and cold would then have
required learning, as described earlier. A natural association is thus always
worth aiming for, though some variables are more suggestive than others of
particular colours.

4.4.3 Perceptual Effects and Colour Vision Deficiency

Our nonlinear hue discrimination mentioned earlier is one consequence of how
the cone sensitivities span the visible spectrum. Another is our overall spectral
sensitivity, which also has a nonlinear variation with wavelength, the response
being greatest in the mid-range and least at the extremes. The effect of this is
to make a greenish colour appear brighter to an observer than the equivalent
source of red or blue, with blue appearing the least bright.

How bright a colour seems is a subjective quality but we can get a quan-
titative handle on it by calculating its luminance, Y. For a modern monitor
emitting light at the principal wavelengths of its red, green, and blue primaries,
the luminance of a particular colour is a weighted sum of its components R, G,
and B:

Y = 0.2126R + 0.7152G + 0.0722B, (4.1)

where we can see from the large ‘green’ coefficient that this component con-
tributes most to how bright a colour will appear. This equation denotes a
sequence of planes within the RGB cube: Fig. 4.11(a) shows the one corre-
sponding to Y = 0.5. All the colours on this plane have the same luminance,
set at one-half, and therefore will appear equally bright. Compare this now
with the plane (R + G + B)/3 = 0.5, shown in Fig. 4.11(b), of colours repre-
senting the same physical power. It goes through the same point on the line
of greys as Y = 0.5 but is perpendicular to it. To get to (a) from (b) we
have to push down the value of the green to make it darker and decrease the
saturation of magenta to make it paler, gradually tilting the plane until the
luminance is everywhere the same.

We can see the effect for the colour map put forward in Fig. 4.10 by drawing
a graph of Y versus data value (Fig. 4.12). As well as the hue variation that
we introduced intentionally, we have inadvertently introduced a luminance
variation as well. This means that, against a lighter grey background (upper
dotted line) the ‘hot’ features of our visualization will be less noticeable than
the ‘cold’, whilst against a darker background (lower dotted line) the reverse
will be true. Proportionately, the differences diminish against very dark or
very light backgrounds, but the effectiveness of a visualization should not on
principle depend on such an arbitrary choice. Fortunately for these two hues
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the effect is easily corrected by varying the green component a little, and
Fig. 4.13 shows the new and old loci of colours within the RGB cube.
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Fig. 4.11. In (a) planes of equiluminant colours lie tilted to the line of greys because
the coefficients of the colours’ red, green, and blue components are unequal (4.1); in
(b) planes of constant (R + G + B)/3, by contrast, lie perpendicular.
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Fig. 4.12. Plot of luminance for a colour map that varies linearly from (0,0.5,1)
at the minimum data value to (1,0.5,0) at the maximum.
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Our nonlinear response to wavelength also affects the number of shades
and tints that we can distinguish for different hues. For example yellow, being
an intrinsically bright hue, makes a much more discriminating value-varying
colour map than blue, whilst the converse is true, but to a lesser extent, for
a saturation-varying map. It follows that if we attempt to increase the usable
range of a single-hue colour map by first varying value and then saturation,
the position for the pure, full-value hue will not in general fall at the midpoint,
and where it does fall will be different for different hues. The overall dynamic
range of a colour map likewise varies with the hue that is chosen. In effect, we
can think of the RGB cube as if it were distorted (Fig. 4.14), with its yellow
and green vertices pushed upwards and the blue vertex pulled down.

For colour maps with an intentional luminance variation the aim should be
for each segment of the colour map to appear lighter than the one before it, by
an equal amount. The situation here is complicated by both perceptual issues
and the set-up of the monitor’s contrast, brightness, and gamma correction.

0.1.0
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Fig. 4.13. In (a) is the colour map lying on the equiluminant plane of Fig. 4.11(a)
that is the nearest equivalent to the original sky blue — orange variation found on
the plane of Fig. 4.11(Db).
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Fig. 4.14. The RGB cube distorted to give an impression of how we see it.
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A useful check is always first to display a grey scale to confirm that variation
is even across the range: the mid-tones should appear neither too dark nor
too light; the scale’s black and white endpoints should not ‘swallow’ a dispro-
portionate range of the data values. Once the grey scale has been checked the
colour mapping can proceed to add hue variation. This dependence on the
output device underlines a point that is often missed by visualization users,
namely that any colour map devised via RGB or HSV is specific to the monitor
it was created on. Changing the device will produce a change in appearance
even though the map’s description has not changed, simply because a colour
model makes no reference to the wavelengths of the particular primaries that
are used. The potential risk in this can be underestimated — many a visu-
alization presentation has been ruined or had its impact greatly reduced by
forgetting to test the colour map that was constructed in the laboratory on
the video projector used for the talk.

The device used for the visualization is just one aspect of variation that
must be taken into account — another is the user themselves. Adjustment
of the colour map will be necessary for users with anomalous colour vision,
and for them a completely different strategy might be appropriate. For these
users it is important to recall that two of their cone sensitivity curves have
reduced (or effectively no) separation (see Sect. 4.2). Precisely that portion
of the hue disk between red and green that offers such good discrimination
for others will give very little discrimination for the most common colour
anomalies. An alternative scheme that involves just one of these hues plus
the short-wavelength (‘blue’) system may have to be substituted. For some
types of colour anomaly, reds may already appear dark and therefore a value-
varying scheme using low hue angle will be of little value. If only one hue is
being used, then effectively its contribution is only to label data, for example,
denoting undesirable values in red (Fig. 4.8(d)). In this situation a grey scale
could be substituted provided the direction of variation is clear. Even amongst
users with normal colour vision it will be necessary to adjust a colour map
to help a particular individual understand her data. The strategies presented
here should therefore be regarded only as starting points; after all, as Chap. 1
described, the interactive nature of visualization is one aspect that sets it
apart from computer graphics, and interaction with colour is simply one facet
of this.
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Problems

4.1. Describe the process by which we see the yellow colour of a streetlamp.
How is it different from seeing the yellow colour of a photograph of a street-
lamp displayed on your computer monitor?

4.2. Run the provided software? demonstrating the relationship between the
RGB and HSV colour models. Rotate the solid, coloured cube so that you are
looking down on the white vertex, then turn the solid cube off. You should
be looking into the mouth of a six-sided cone; all the points on this cone rep-
resent colours whose saturation is one-half. The square-shaped surface rep-
resents colours whose value is one-half. Experiment with the saturation and
value widgets. Where are the fully saturated colours? Where are the full-value
colours?

Use the software to follow the derivation in Sect. 4.3.3 of dark red and pale
green. Derive the RGB equivalents of some more complicated colours such as
dark yellow and pale magenta.

4.3. Run the provided software demonstrating the use of vector colouring.
This is quite a commonly seen technique — the nightly television weather fore-
cast may well use the direction and sizes of its arrows to indicate wind speed
and heading, with the colours of the arrows also indicating air temperature.
In the example here, two renderings are shown of the same data — the task is
to decide whether the flow is predominantly upwards or down. Try adjusting
the grey of the background on one of the renderings, making it alternately
lighter and darker. What effect do you see and how would you explain it?

4.4. Run the provided software demonstrating the relationship between lumi-
nance and RGB value. Locate the colour map shown in Fig. 4.13(a) that runs
from sky blue through to orange via equiluminant grey. What is the satura-
tion and value of these endpoint colours? Locate the colour map that runs
orthogonal to this one, linking pale-ish magenta with darkish green. Estimate
the RGB values of the endpoints of this colour map and put them into (4.1)
to confirm that luminance remains constant at one-half.

Construct a colour map linking dark yellow and pale blue that has lumi-
nance constant throughout at one-half. This colour map lies on a line halfway
between the two already described. Use this colour map in the software sup-
porting Prob. 4.3 in place of the one provided originally and adjust the grey of
the background as before. What effect do you see and how would you explain
it?

2 The Preface contains details of where to obtain the software that supports the
problems.
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Choosing Techniques

This chapter puts forward a matching method for choosing techniques based
on the one hand on a classification of the data and, on the other, taxonomy
of currently available techniques.

5.1 Classifying Data

Section 2.2.2 introduced the notion of what is underlying data and mentioned
interpolation as a means of filling in the gaps. In this section we re-visit this
idea in a little more detail in order to define some necessary terminology for
describing data.

5.1.1 Dependent and Independent Variables

Modelling what is underlying data is important because a table of numbers
only contains samples of what is being looked at, from which we must recon-
struct an object that is representative of the whole. Take, for example, the
simple formula

y=2x+1. (5.1)

This is a particular case of y = ax + b, where a and b are constants. This line
must intercept the y-axis (where = 0) at b and similarly must intercept the
z-axis at * = —b/a. The gradient, or slope, of any such line is thus always
b+b/a = a. Having worked out the particular values of intercept and slope for
(5.1) we could therefore draw the corresponding line graph as in Fig. 5.1(a).
We could also have arrived at this visualization another way, though, using
computed values such as in Table 5.1. Plotting these is, of course, highly
indicative of a linear relation and, having taken a few measurements to deter-
mine the intercept and slope, we may well propose to interpolate the points
(Fig. 5.1(b)) using (5.1).
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The difference between these two scenarios is that the first is a mathe-
matical description that is known to be valid for all values of z, whereas the
second is a numerical description defined only at discrete points. In scientific
visualization the second scenario is the one more commonly found, with data
only available at certain points. The reason for this is that computational
science usually sets out with a mathematical formulation of a problem but
typically the equations are too hard to solve outright over the whole range of
the variables. Breaking down into smaller chunks and solving numerically is
often the only option, making it necessary to try to work backwards to what
the answer would have been had the problem been solvable in the first place.
For this example, then, the proposed model of the answer is y = ax + b with
a = 2 and b = 1. Having one model fit the whole range of the variables is
rare — it is more usual to need one per chunk — but it will suffice for current
purposes.

Table 5.1. Values of y that satisfy (5.1) for various values of =

y=2xr+1
x 1 2 3 4 5
Y 5 7 9 11
10
'd
,0"
Y .
5 K2
l"
0
o 1 2 3 4 5 1 2 3 4 5
X X
(a) (b)

Fig. 5.1. In (a), a line drawn with a particular intercept and slope defines a relation
between z and y that is valid everywhere. By contrast in (b), plotting individual
values from Table 5.1 may be highly suggestive of the same relation, but we will
never really know if our guesswork between the points and beyond them is valid.
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The first element of terminology to master in computational science (and
therefore in scientific visualization) is the concept of dependent and indepen-
dent variables. Here we have two variables (remember a and b are constants)
x and y. Variable z is called the independent variable because it is the one we
choose to set the value of (vary independently) before solving for y, written
on its own on the left of the ‘equals’. Variable y, because its value depends on
that chosen for z, is termed the dependent variable. In fact, because this rela-
tion is linear we could rearrange the equation and then choose any y in order
to solve for z, i.e., z = (y — b)/a. Although the numbers in the table would
coincide if we happened to choose the same points as before, the variables in
this case would switch roles: y would now be the independent variable and x,
because its value is calculated from y’s, would become the dependent variable.
If we were to plot this new function we would switch the axes, too, because
conventionally the vertical direction is used for the dependent variable and the
horizontal for the independent. Switching axes like this could well generate
confusion though, because the one usually called y would be labelled x, and
vice versa.

This discussion shows up two drawbacks in this way of writing mathe-
matical relationships: firstly, (5.1) is immediately suggestive of a line graph,
indeed, the name sometimes given to this technique is an ‘z-y’ plot. Secondly,
the idea of plotting a relation between x and y is so bound up with the line
graph it leads to assumptions, which as we have seen might not be valid, about
which variable is dependent and which independent.

What is needed is an AVO-independent notation that also makes clear
which is the dependent and which the independent variable. Rewriting (5.1)
as

fl@)=2z+1 (5.2)

solves both these problems. f(x), meaning “function of x”, unambiguously
distinguishes this quantity as the dependent variable, whilst the = within the
brackets shows that this variable, wherever it occurs in the formula, can never
be anything other than the independent one. The same understanding would
hold even if we were to rearrange to give x = (f(z) — 1)/2, 1 = f(z) — 2z, or
any other version we could think of.

Thinking about data in the abstract like this, without preconceptions as
to how we will display it, can also be beneficial when it comes to choosing
techniques. For instance, having broken the inherent association of the depen-
dent variable with the y-axis of a line graph we might now think of mapping
this data instead to the loudness or pitch of a sound generated as we move a
probe back and forth along a line denoting the independent variable. We will
also find an abstract approach is of value when considering higher-dimensional
data, and when reducing data dimensions by taking slices or sections. Further
details will be given in Sect. 5.1.3.

By extending the notation of (5.2) a little we can also distinguish whether
we are dealing with a mathematical model that is valid over the whole range



58 5 Choosing Techniques

of the independent variables or a numerical one valid only at discrete points.
Generally f(x) is taken to mean the former and f, the latter. Thus, from
Table 5.1 we would deduce f; =3, fo =5 and so on.

So much for the concept of independent and dependent variables when
the model is a mathematical one. This situation obviously covers simulation
data, but Sect. 3.1 talked of other types of data too, such as scanner output
and experimental results. Does the idea extend naturally to these other types?
Fortunately the answer is ‘yes’; provided we hold onto the principle of choosing
one value (the independent variable) in order to find the other (the dependent
variable). Thus, in the case of the scanner output of Sect. 3.1 we can think
of choosing a particular coordinate in the person’s head in order to measure
the tissue density there. Needless to say, a CT scanner doesn’t quite work like
this, but the metaphor is useful here. The independent variable is the place we
choose to make the measurement and the dependent variable is the value we
find there. For the combustion chamber of Fig. 2.20 the independent variable
is time, because we choose the times at which to monitor the chamber and the
equipment reading tells us the ozone concentration. The ozone concentration
value thus goes up or down depending on when we read it. To emphasise the
dependence on time we could model this system as “f(¢)” rather than “f(x)”.
Here we see another advantage of thinking about data in the abstract: even
though the experiment never existed as a mathematical formulation originally,
referring to “f(t)” is still a convenient way of capturing what we are trying
to reconstruct. What follows will thus refer to any data using the “function
of” notation, whether or not it is the result of a simulation, measurement or
experiment.

5.1.2 Data Domain

Having arrived at the idea of a model, f(x), of what is underlying data,
we need now to generalise. Our first observation relates to the independent
variable z, which we can see from Table 5.1 is not just a set of numbers but a
sequence of numbers. In fact, = is more properly described as a vector quantity,
that is, it consists of both a magnitude and a direction defined according to
some coordinate system. We could be forgiven for not recognising it as such
in this case, because the coordinate system is just a single straight line with
the various data points marked off along it. Since the line is one-dimensional
we can refer to this data as having a 1D domain or, even more succinctly, as
“1D data”.

Vectors are usually depicted in bold upright face to distinguish them from
ordinary quantities, therefore our model is not just f(z) but strictly f(x).
Given an appropriate coordinate system it could therefore also describe 2D,
3D or even nD data. If the data is time-varying as well, this dimension is
not usually folded in with x but written as f(x;t). The fact that we are not
restricted to three dimensions (plus time, if present) when talking about the
data domain represents another generalisation. Whilst it is true we can only
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readily conceive of visualizations occupying three-dimensional space, the same
is not true of data. However, if we do ever meet data of higher dimension than
three, we have to think in terms of projections or slices in order to overcome
the natural limitations of our perceptual abilities.

As data grows in the number of its dimensions, so too does the available
choice of coordinate system. Most readers will be familiar with Cartesian co-
ordinates defined on two or three mutually perpendicular axes. These axial
systems are very useful for describing problems over a rectangular domain but
they are by no means the only ones available and others can be more conve-
nient if they match the geometry of the problem better. Polar coordinates are
commonly encountered: Fig. 5.2 shows cylindrical and spherical polar coordi-
nate systems, which might respectively be used for describing flow in a pipe
and convection physics within the Sun. Both these problems would be much
harder to define and solve in rectangular coordinates. When visualizing the
results, however, it may well be necessary to transform to a Cartesian system
because this is what most off-the-shelf software employs.

After the separation of the independent from the dependent variables,
the identification of the data domain as 1D, 2D, and so on is the next most
important step in choosing an appropriate visualization technique. The par-
ticular coordinate system used is not usually a complicating factor in this,
since transformation between coordinate systems of equivalent dimension is
always possible. Data that is 3D, for example, in one coordinate system will
remain 3D in any it is re-described for. These cases are therefore straightfor-
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Fig. 5.2. In (a), a point whose cylindrical polar coordinates are (r, ¢, z) has an
equivalent description in Cartesian coordinates (x, y, z) = (r cos¢, r sing, z). In
(b) the same point described in spherical polar coordinates as (r, 8, ¢) corresponds
to (z, y, z) = (r sin 6 cos ¢, r sinf sin @, r cos ). It is easy to see that setting z =0
in (a) or # = ©/2 in (b) yields a single 2D polar system (r, ¢) where (z,y) =
(r cos @, r sin@).
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ward to classify. Care is needed, however, when we encounter a data domain
embedded within a space of higher dimension, since it is the dimension of the
domain itself that determines the techniques we will use, not the dimension of
the enclosing space. Such data is said to be defined on a manifold, that is, a
structure that locally appears to be of lower dimension than it does globally.
Our very own Earth is perhaps one of the best illustrations of the concept of
a manifold — from space it appears three-dimensional but on its surface we
navigate in terms of two variables, latitude and longitude. When we visualize
the height of the land or rainfall across the region we therefore choose from
the techniques available for 2D data, not those for 3D, because the domain is
inherently two-dimensional. Section 5.1.3 illustrates these principles further.

5.1.3 Scalar and Vector Types

The discussion of Sect. 5.1.2 deals with the independent variable; our next
generalisation concerns the dependent variable and its qualities. The f(x) we
have met thus far is a single-valued quantity, or scalar function, but there
could be several relations like this involving x that are true simultaneously.
We can thus imagine two scalar dependent variables f(x) and g(x) defined
across the domain which might be plotted as multiple line graphs (Fig. 5.3).

Multiple scalar dependent variables are perfectly common but let us now
suppose that the independent variable of Fig. 5.3 is time and f and g are
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Fig. 5.3. Multiple line graphs can be useful for showing the relationship between
several scalar values across the same data domain. Image credit: IRIS Explorer,
synthetic data.
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the Cartesian coordinates of an insect as it scurries around the floor. Plotting
its path (Fig. 5.4) gives us a quite different visualization to the multiple line
graphs but one which is much more illuminating, since now it is obvious the
ant spends much of its time in the top right corner of the space. Rather than
having dependent variables that are two separate scalars, this data is really a
single dependent variable that is a two-dimensional vector. Mostly we think
of vectors when the problem is one of fluid flow, such as in weather forecasting
or when charting ocean currents. Talking of positions as vectors might thus be
an unfamiliar concept but we can see they are so when we look at the essential
role of the coordinate system in making sense of the f and g: had these been
equivalent to the r and ¢ of a polar coordinate system (see Fig. 5.2), then the
ant’s path would have been very different.

In fact, we can tie up this example with the concept of manifolds intro-
duced earlier. Looking at the path in Fig. 5.4 from the ant’s point of view, it
is one-dimensional because locally there is just where he is headed and where
he’s been. From our elevated position, however, we see the global picture of
his route embedded in two-dimensional space. If the ant is being monitored
at time intervals At, we see that the independent variable, time, is spread
out along the insect’s path. This is entirely consistent because time is one-
dimensional, just as the path is when it is viewed locally. Widely separated
points occur in high-speed regions, where the magnitude of the ant’s velocity
is greatest. We could therefore have converted this data to a set of velocity

y=9(
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Fig. 5.4. The same data as in Fig. 5.3 looks rather different when it is interpreted
as position vectors observed at time intervals At¢. Image credit: IRIS Explorer,
synthetic data.
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vectors and viewed them either along a 1D time axis as in Fig. 5.5(a) or
distributed according to the ant’s current position as in Fig. 5.5(b).

Whether we talk of position vectors or velocity vectors, this problem’s de-
pendent variable is described in terms of a set of two-dimensional axes for
the vectors attached at every point on the 1D axis of the time-line compris-
ing the independent variable (Fig. 5.6). This figure underlines an important
point about dependent and independent variables, namely that the coordi-
nate system that defines the one need not be the same as that for the other.
Scalar data across a 2D domain, for instance, comprises a one-dimensional
dependent variable axis (the real number line) attached at every point of the
(higher-dimensioned) 2D data domain. In vector problems the reverse is of-
ten seen, with a dependent variable space of higher dimension than the data
domain. This is a feature not only of trajectories but also occurs in 3D fluid
flow problems when the domain is sliced to reduce the amount of data be-
ing handled. The slicing operation reduces the dimension of the independent
variable to 2D but the dependent variable is unaffected — each 2D slice still
contains three-dimensional vectors. Stacking the slices back up again in order
restores the volume to its original form.

Distinguishing whether a dependent variable should be treated as multiple
scalars or an n-dimensional vector is occasionally a matter of interpretation
but what should never be in doubt is the separation of the independent from
the dependent variables. The concept of which to choose and which to de-
termine holds fast whatever complications are brought on by the spaces the
variables occupy. Using the ‘ant’ example again, on seeing its path we could
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Fig. 5.5. The ant’s velocity vectors can either be distributed along a 1D time-line
pointing into the page (a) or within a plane according to the ant’s current position
(b). Note how the longer vectors in (b) correspond with more widely separated
points in Fig. 5.4.
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quite easily have mistaken the two-dimensional space of its position vectors
(Fig. 5.4) for the data domain and referred to f and g as the independent
variables. After all, in the case of the line graph one of the axes of the visu-
alization object depicted the independent variable, so why should the same
not be true of the z- and y-axes of Fig. 5.47 For the ant this cannot be right
though: we cannot go to just any place we choose and measure when the ant
arrives, because it might never visit that spot. What we can do, however, is
choose a time and measure where the ant is. Once again, thinking about data
in the abstract, without reference to its visualization, is the key to correct
classification.
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Fig. 5.6. Viewed in the abstract, the 1D time domain of Fig. 5.5(a) has attached
to it a sequence of two-dimensional spaces needed to describe the ant’s velocities.
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5.2 Taxonomy of Visualization Techniques

Having determined the independent and dependent variables of the problem,
the dimension of the data domain spanned by the independent variables, and
the scalar or vector nature of the dependent variable(s), we are nearly ready
to categorise the various techniques we will meet. One final refinement in the
description of the independent variable is needed, which is to incorporate the
ideas of Sect. 2.2 that distinguished data as nominal, aggregated or ordinal.
Recall that nominal (or named) data has no inherent order, though we may
choose to display items in a particular sequence to make some special point.
Aggregated data occurs where a range of values in the data domain contribute
to a single value for the dependent variable that is applicable across the whole
of that range. An example would be to visualize the age distribution of the
population by counting individuals whose ages fall into a number of 5-year
ranges. This type of data must be plotted with the data bins in order, whilst
the dependent variable value per bin applies to the whole of that bin. Ordinal
data does have an order but may be discontinuous (not join on) from one value
to the next. If ordinal data is continuous, it will join on from one value to the
next but now we must exercise care when visualizing in how we interpolate,
or fill in, between the data points.

Putting all these ideas together yields Table 5.2. Here, the dependent vari-
ables and their type(s) determine which column a technique occupies, whilst
the dimension and nature (whether nominal, aggregated, or ordinal) of the
independent variable determines its row.

When techniques are organised like this we can make some general ob-
servations, starting with the dimensionality of the visualization objects in
relation to the independent and dependent variable spaces (see Sect. 5.1.3)
of the data. Thus, for a single scalar dependent variable the dimensionality
of the visualization is usually greater, by one, than the dimensionality of the
independent variable space — an example would be a bar chart, which occupies
two dimensions of the display in order to show 1D nominal data. Those few
techniques for scalar data where the visualization has the same dimension-
ality as the data domain fall into two types: the first type may only show a
selection of the data — for example a flat contour plot occupies two display
dimensions in order to show 2D data but only certain values of the dependent
variable, i.e. the contour lines, are actually displayed. We shall soon see in
Sect. 6.3.2 that the isosurface technique for 3D data is also of this type. The
second type may show all values of the dependent variable by using colour;
the image display and volume render techniques, respectively used for 2D and
3D data, are of this type.

For vector data the situation is different. Here, the required display di-
mensions are governed by the dimensions of the dependent variable space
rather than the independent variable space. For example, a trajectory of
three-dimensional position vectors will yield a line in three dimensions, even
though the independent variable, time, is 1D; three-dimensional arrows will
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Table 5.2. The visualization techniques that will be described in this book, organ-
ised according to the dimension of the data domain and its nature (whether nominal,
aggregated, or ordinal), and the number and type(s) of the dependent variable(s)

Dependent Variable(s)

Independent Single Multiple Vector Scalar(s)
Variable(s) Scalar Scalars & Vector
1D Nominal Bar chart Clustered Scatterplot
bar chart
Stacked
bar chart
Pie chart
1D Aggregated Histogram Superimposed
histograms
Stacked
histograms
1D Ordinal Line graph ~ Superimposed Trajectory Coloured
line graphs trajectory
Stacked Swept
line graphs polygon
2D Nominal 2D bar chart
2D Aggregated 2D histogram
Bounded
region plot
2D Ordinal Image Solid arrows Coloured
display on plane arrows
Contour plot Line arrows
Surface view Height- Streamline Coloured
field plot Timeline line
Flow texture
3D Ordinal Isosurface Coloured Arrows in Coloured
isosurface volume arrows
Volume Streamribbon/ Swept
render surface/tube polygon

Time surface

require three display dimensions whether they are attached to a plane or sit-
ting within a volume. Colour, if it is used at all with vector techniques, is
confined to adding scalar information. We can thus see a pattern develop-
ing: data needs a certain number of degrees of freedom to visualize it, which
techniques provide by means of their AVOs’ spatial and colour attributes. If
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this book were to deal with perceptualisation the attributes could also include
sound (auditory displays), or touch and force-feedback (haptic displays).

Another observation we can make is that not all these attributes are
equally in demand when mapping data to features of the AVO: a glance across
Table 5.2 shows that spatial features dominate over colour, which tends to be
used to add information to an existing visualization object. For example, we
would never show 1D ordinal data as a straight but coloured line if we had the
option to draw a line graph, but if the line represents an insect’s trajectory
we may well colour it if we also want to show its speed (a scalar) along the
path.

As well as adding desirable information, colour may become an essential
device if all the display’s available spatial dimensions already hold some spe-
cial significance. For example, a surface view (recall Fig. 2.10) would be fine
for showing, say, temperature across a flat data domain. However if the do-
main is the curved wing of an aircraft it would be confusing to show the
dependent variable as a perpendicular displacement of that curvature, even
though this is the exact counterpart of height in a surface view. We would not
know, from looking at the visualization object, whether the form of the sur-
face derived from the shape of the wing, the temperature distribution across
it, or a combination of both. In this case we would use the spatial degrees of
freedom solely to describe the wing shape — a 2D domain embedded in three-
dimensional space — and then construct an overlay of colours or greyscale (an
image display) on this manifold. Draping an initially flat contour plot over
the wing shape would achieve much the same purpose.

The essence of the difficulty just described is how to maintain uniqueness
of data-to-attribute mapping. A similar problem arises if the domain is sliced
to reduce its dimensions. Recall from Sect. 5.1.3 that the slicing operation
reduces the dimension of the independent variable but leaves the dependent
variable space unchanged. We could therefore imagine augmenting the tech-
niques shown in Table. 5.2 for 3D scalar data by taking slices of the volume
and applying techniques for 2D data to them. Image displays (recall Fig. 2.14)
and contour plots would be good candidates because they can show 2D data
within two display dimensions. However, surface views would have restricted
utility in this situation since they need a third display dimension, potentially
becoming confused with the third domain dimension that is orthogonal to the
slice.

Slicing the domain progressively reduces the dimension of the independent
variable, moving up the rows of the table. The opposite operation, stacking,
takes us down the rows, and usually warrants consideration when data sets
are time-varying. Whilst the obvious suggestion for showing time-varying data
is to animate the equivalent static visualization, whether to map time to
animation or space can in fact depend on the intended medium and whether
the display’s spatial degrees of freedom are already used up. Thus, Fig. 2.13
showed the individual frames from a visualization designed to show 2D time-
varying data as an animated surface view. Since one surface view already
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occupies three dimensions of the display there are only two options: either
tile the multiple surface views or animate them. The same would not be true
of 1D time-varying data, though. Whilst it would be possible to animate a
line graph, or tile a set of line graphs, we could also consider stacking up
the frames to make a static 2D domain and applying a surface view. In this
way the complete variation is captured in one, stationary display. Mapping to
space like this, rather than animation, is also the preferred option when time
is the only independent variable: a line graph whose z-axis denotes time is
much more useful than animating a single point back and forth along a line
denoting the numerical range of the dependent variable.

As well as denoting time, animation can also be used for static data if the
visualization technique can only cover part of the domain at any one moment.
Slicing a volume and applying techniques for 2D data as was just described has
a drawback: more slices cover the volume better but make it more difficult to
see between them. Another solution, described in Sect. 2.1.3, was to animate
a single slice back and forth. In terms of Table 5.2, animation can therefore
fulfill a dual role: it can be mapped by the independent variable ‘time’ or
provide another degree of freedom to help visualize a static data set. Needless
to say it should not be asked to do both simultaneously, for that would violate
the uniqueness principle!

The remainder of this book now goes into more detail on the construction
and usage of each visualization. Chapter 6 deals with purely scalar data and
the techniques in the first two columns of Table 5.2. Chapter 7 completes the
table by covering vector data and, where applicable, the addition of scalar
information.
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Problems

5.1. Go back through all the figures so far in this book that show a visualiza-
tion and see if you can classify the data for each one in terms of its independent
and dependent variable(s), and whether they are scalar or vector type.

5.2. Early map-makers used to draw terrain in pseudo-perspective in order
to convey the idea of rising and falling ground. As a technique it had some
advantages in that hills were immediately distinguishable from valleys, but
disadvantages in the degree of accuracy with which the different heights and
their horizontal location could be conveyed. This pictorial approach has almost
universally fallen into disuse, except for some city tourist maps that sometimes
depict landmarks in this way.

Given a table of values representing a terrain as heights above sea level,
what are the dependent and independent variables of this problem? What is
the usual representation of such data in

1. a rambler’s map of the countryside
2. a page in an atlas?

5.3. A common technique for showing pressure on a weather map is to use
isobars. Classify this data in terms of its independent and dependent variables.
What is the generic name of the technique being used?

5.4. Arrows are frequently used to show wind speed and direction on a weather
map. Does adding colour to the arrows to signify how warm or cold the air is
affect the classification of the independent or the dependent variables?
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Visualizing Scalars

The previous chapter introduces the notion of the different degrees of free-
dom provided by the attributes of abstract visualization objects, together
with some rules of thumb that help distribute features in data onto these
attributes. This chapter now looks at the use of each technique for scalar
data in turn, gradually working down the rows of Table 5.2. The large-scale
organisation of the chapter thus reflects the dimension of the data domain,
i.e., the independent variable. Within this overall approach, techniques for
nominal and aggregated data are described first, followed by those for ordinal
data. Since ordinal data may be continuous across the domain it requires a
framework over which we can interpolate, so triangulation of 2D and 3D data
is described at the appropriate point in each section.

6.1 1D Data

A number of techniques for 1D data with a single scalar variable have already
been encountered in previous chapters and the principles described there need
not be revisited. Looking at Table 5.2, however, it is noticeable that 1D data
differs from 2D and 3D in the possibilities available to display several scalars
simultaneously. In this section we therefore concentrate on some strategies for
displaying multiple scalar values defined over a 1D domain.

6.1.1 Bar Chart, Pie Chart, and Scatterplot

Two common strategies for handling multiple scalars within a bar chart are
first to cluster and second to stack the bars, as shown in Figs. 6.1 and 6.2. Clus-
tering (also called grouping) emphasises variation between dependent vari-
ables whereas stacking emphasises variation within each one. A problem with
stacking the bars is that each scalar is added to the one before it so the success
of this type of display is very much dependent on the degree of variation to
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be shown and on the order of placing the components. In Fig. 6.2(a) the vari-
able placed first increases a little and then falls back to slightly less than the
leftmost value. The next variable, forming the middle of the stacks, exhibits
similar properties which further magnifies the rise in the baseline on which
the third set is placed. This set is different to the first two, exhibiting a fall
first and then a rise, a variation that is quite difficult to spot when the eye is
more naturally drawn to the endpoints of the bars. Figure 6.2(b) reverses the
order of placement of the components. The distinctive variation of the third
set of scalars is now easy to see but possibly at the expense of understanding
the others as well as we did with (a).

For all its faults, bar stacking is very useful for showing the variation
of summed scalars, something that a clustered chart does not easily convey.
If the requirement, however, is to show values as a proportion of the total
then in limited circumstances a pie chart may be more effective. Figure 6.3
compares a bar chart with a pie chart of the same set of data and the latter
does give a sense of each value contributing proportionately to the whole.
The effectiveness of pie charts in scaling up to multiple dependent variables is
debatable, though — tiling the different charts is an obvious choice but their
effective comparison introduces the conflicting requirement for proximity on
the display.

If a dataset is large and has multiple scalar dependent variables, then a
scatterplot is worth considering. Figure 6.4 shows a three-dimensional scat-
terplot, where the coordinates of each of the n points are obtained from the
corresponding dependent variables, i.e., (z,y, z)n, = (varl, var2,var3),. Clus-
tering of points into a group, or onto a line or plane in the space, shows a
relationship between the dependent variables that might not be seen with a
stacked or clustered bar chart.

A potential confusion that is worth mentioning here arises in respect of
the axis labels of Fig. 6.4, all of which reflect the names of the dependent
variables. The names comprising the individual independent variable values,
which in a bar chart would appear below the bars, now apply to the individual
points in the scatterplot. These might be drawn by means of text labels that
float alongside in the three-dimensional space, though cluttering of the display
can be a problem. A scatterplot can thus show a correlation between multiple
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Fig. 6.1. A clustered bar chart emphasises the variation between the dependent
variables.
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Fig. 6.2. Compared with Fig. 6.1, stacking bars emphasises variation within each
variable, though the insight gained is dependent on the data and the order of stack-
ing.
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Fig. 6.3. The same data can be displayed using a bar chart and a pie chart. In a
bar chart the relative sizes of the values are easily judged, but in a pie chart their
contribution as a proportion of the whole is emphasised.
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Fig. 6.4. A three-dimensional scatterplot showing the relationship between depen-
dent variable values of height, weight, and age observed for 10 different individuals.
Image credit: IRIS Explorer, synthetic data.
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dependent variables rather better than a bar chart, but somewhat at the
expense of being able to show information about the independent variable.
Fortunately, for large datasets the independent variable values are often simply
identifiers within some sequence of experiments or observations, and might be
omitted entirely from the display.

Strictly speaking a scatterplot visualization treats the dependent variable
as a single vector, rather than multiple scalar type, an issue of interpretation
that was mentioned in passing in Sect. 5.1.3. The individual values become
the different components of the points’ position vectors and we can see a
parallel with the trajectories that were discussed there. However, because the
independent variable is nominal there are no connections between the points
because the data has no inherent order.

6.1.2 Histogram and Line Graph

The concept of stacking transfers unchanged to the histogram and line graph
techniques (Figs. 6.5(a) and 6.6(a)) but the same caveats apply in respect of
the insight that can be gained as in the case of stacked bar charts. The closest
analogue of clustering bars in a bar chart is to superimpose the different lines
since this uses a common baseline for all the dependent variables (Figs. 6.5(b)
and 6.6(b)). However, the lack now of any horizontal separation to the dif-
ferent components (cf. Fig. 6.1, where each bar within a cluster remained
distinct) may make the variation between several dependent variables harder
to understand, especially if the lines criss-cross one another. An important
counterexample occurs when the difference between just two variables is what
is important — in Fig. 6.7 the increasing distance with time between the two
plotted lines shows very clearly that this person is getting further and fur-
ther into debt. This example serves to underline the value of superimposition
(and clustering) to compare values, whereas stacking principally shows their
summation.

A+B+C
A+B
_,_,A_|_|_|_ A
(@) (b)

Fig. 6.5. A stacked (a) compared with a superimposed (b) set of histograms.
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6.2 2D Data

All of the visualizations in Sect. 6.1 occupied two display dimensions. For 2D
scalar data we need three degrees of freedom so we can either use three display
dimensions or two display dimensions augmented by colour. Alternatively we
might use two display dimensions but show the data selectively. Increasing the
dimensionality of the data domain also introduces the possibility of slicing it
and applying techniques from Sect. 6.1. Similarly we shall see under what
conditions it may be feasible to stack several 1D data domains in order to
apply the techniques in this section.

6.2.1 2D Bar Chart

For 2D data the bar chart technique extends quite naturally, with three-
dimensional bars set perpendicular to the base plane of the visualization. If
there are several scalars, then stacking and clustering can theoretically be used
as for 1D data, but in practice the problems of occlusion and clutter make
interpretation very difficult. Even with just one scalar the price paid for being

A+B+C
A+B
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Fig. 6.6. A stacked (a) compared with a superimposed (b) set of line graphs.
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Fig. 6.7. Two superimposed line graphs show very naturally the difference between
variables and the variation of this difference across the data domain.
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able to see variations according to two independent variables is occlusion.
The ability to rotate the visualization interactively is important here, as is
the option to turn off perspective projection when trying to make quantitative
judgments. Slicing the domain and using the equivalent technique for 1D data
(recall Figs. 2.6 and 2.7) will also aid accurate comparison if needed.

A 2D bar chart can also present a means to display 1D nominal data with
multiple scalar variables but without having to stack or cluster the bars as was
described in Sect. 6.1. Figure 6.8 shows the same data as Figs. 6.1 and 6.2, with
the three dependent variables called A, B, and C now having assumed the role
of one, new, nominal independent variable with values A, B, and C. In effect,
the multiplicity of scalars has been reduced by increasing the dimensionality
of the data, a manipulation that is feasible because the domain is nominal.
With this three-dimensional representation, variation between the (formerly
three dependent) variables is now obtained with one view, whilst variation
within them is seen by rotating to look from the orthogonal direction.
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Fig. 6.8. A 1D nominal dataset shown as a stacked or clustered bar chart (a) can
have its multiple scalars reduced by increasing the dimensionality of the data domain
and using a 2D bar chart (b). Lower image credit: IRIS Explorer, synthetic data.
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6.2.2 2D Histogram

Transformations of the dependent into independent variables should be un-
dertaken with some care when the data is aggregated. An example can be
seen in the visualizations of student marks in Fig. 6.9, where the ‘Maths’
and ‘Physics’ dependent variables, whose histograms are superimposed in (a),
have been separated and recombined to form a 2D data object. This does not
produce a 2D aggregated data domain but rather it results in a hybrid where
one independent variable is aggregated and the second is nominal (c). Only
(b) in Fig. 6.9 is genuinely a 2D histogram, showing the frequency of marks
for Maths and Physics simultaneously.

(a)

Fig. 6.9. Reducing the multiplicity of dependent variables in a superimposed his-
togram of 1D data (a) results in a hybrid visualization (c). In order to see the
variation of the Maths and Physics marks simultaneously (b) we need to recon-
struct the data values that were originally summed to produce (a) and (c). Lower
images credit: IRIS Explorer, synthetic data.
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6.2.3 Bounded Region Plot

A different example of 2D aggregated data occurs where the spatial arrange-
ment of the data domain itself holds some special significance. Now each
dependent variable applies to the whole of a bounded region of the indepen-
dent variables, which might for example be the collection wards of a census or
the countries in a dominion. Figure 6.10 shows a fictitious dataset where the
number of red cars and the total number of cars have been counted for the
various counties in England, Scotland, and Wales. The data has then been ag-
gregated into a single percentage value for each country and mapped to three
different greyscale values. One problem with this type of plot is that the im-
portance ascribed each region is in proportion to its area and not necessarily
the magnitude of its associated data value. Here then is another example of
a visualization trade-off: good understanding of the independent variable do-
main possibly comes at the expense of misinterpreting the dependent variable.

6.2.4 Image Display

The last 2D technique we shall meet that does not require interpolation is
an image display, used for large amounts of observational data such as that
recorded by satellites or scanners. This is mapped to colour or greyscale and
then applied pixel-by-pixel to the display. If the data is dense, the visualization
will appear to vary smoothly (Fig. 6.11(a)), but fewer data points mapped to
a larger display area (b) will reveal a ‘blocky’ appearance caused by allocating
several pixels to the same data value. For this zooming operation the data have
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Fig. 6.10. Map of Great Britain shaded to illustrate the individual countries’ pref-
erences for red cars. Image credit: IRIS Explorer, synthetic data.
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thus been interpreted as discontinuous at each pixel block edge (Fig. 6.12),
rather than blending smoothly from one to the next. Had we taken a slice
along a row j or column ¢ of pixels and plotted the f.; or f;, as a line graph,
it would look like the average monthly share price data of Fig. 2.17.

(a) (b)

Fig. 6.11. Image display showing data mapped to greyscale and plotted (a) with
a one-to-one data point to pixel correspondence. In a ‘zoom’ operation (b), a small
portion from the bottom left of (a) is shown with a one-to-many correspondence
that leads to a blocky appearance in the visualization. Image credit: IRIS Explorer,
test data suite.
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Fig. 6.12. Data point to pixel mapping required to accomplish the 10x10 zoom
in Fig. 6.11(b). We can think of the data as constant within each pixel block and
discontinuous at block edges.
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6.2.5 Making a Framework

The remainder of the 2D techniques to be described will involve some form
of blending from one data point to another. Building a framework is our
next consideration; it will not only support the interpolation necessary for
finding data values in between those that are given but may also be called
upon to provide a means of generating the geometry that is output from the
mapping stage. As we shall soon see, the appearance of (and therefore possibly
the insight conveyed by) the visualization depends on this framework, so its
proper construction is yet another aspect of maintaining visual fidelity.

We can stop here for a moment and ask why the issue of a framework arises
for the first time only when considering 2D data — should not the equivalent
have been encountered in 1D? In fact it was, but we didn’t recognise it: inside
a 1D domain each point has two neighbours (one for a boundary point) and
this connectivity determined the framework for interpolation. Because the
data was 1D there was no debate about how to identify a point’s connectivity
but the greater freedom arising from two dimensions means we have some
choice in the matter and therefore some decisions to make.

For gridded data we can take our cue from the 1D case and propose a
framework that uses a point’s neighbours (Fig. 6.13(a)) to generate a wire-
frame. We could even imagine using this framework directly to produce a
rudimentary surface, by slicing the domain repeatedly in both the z- and
y-directions. Applying a line graph to each subset of the data then gives
Fig. 6.13(b) but the value of this plot is rather limited by its see-through
nature. Our visual system allows us to perceive depth via a number of mecha-
nisms, one of which is the interposition cue. The brain assigns occluded objects
to greater depths in the scene, and the cue is provided in computer graphics
applications by hidden line and hidden surface removal. Rather than thinking
of the data along a collection of lines, we therefore have to consider the spaces
between and this in turn suggests a polygonal model for the domain.

The simplest polygon is the triangle, formed of course from three vertices
and three edges. This simple shape has some interesting properties: firstly, any
three, three-dimensional points will always be co-planar. The milkmaid’s stool
has three legs so it will always rest firmly, regardless of how uneven the ground
might be. Furthermore any two, three-dimensional points are co-linear! so if
points are within a plane, it follows that the line connecting them will also
lie within this same plane. We shall use this fact shortly when describing
contouring. Secondly, any polygon with more than three edges can always be
built from two or more triangles. A ‘proof’ of this appears in Fig. 6.14 and it
is this feature that particularly makes triangulation attractive when building
a framework.

Figure 6.15 shows some special triangulations that arise for gridded data,
which will be used later. In the case of two triangles per grid cell, choosing

L A two-legged stool would also rest firmly but regrettably comes up short in the
stability department.
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(a) (b)

Fig. 6.13. Using a point’s neighbours will generate a line-based framework (a) but
without the means to support hidden line removal (b). Image credit: IRIS Explorer,
synthetic data.

Fig. 6.14. Adding successive triangles increases the number of polygon edges by 2
but at the expense of making an existing edge internal. The overall increase in edges
per triangle added is therefore 1, so it follows that triangles can be used to build a
polygon with any number of edges > 3.

@) (b) ©

Fig. 6.15. Triangulations of gridded data can consist of 4 (a) or 2 (b, c) triangles
per cell. Other combinations of diagonals mixing styles (b) and (c) can also be
considered depending how the data varies across the domain.
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consistent diagonals leads to (b) or (c) or, if the data is known in advance,
a mixture may be selected based on a criterion such as the change in surface
normal on going from one triangle to the next.

If data is given at scattered points, a different approach is needed. First the
space must be divided up between the points to form regions, all parts of which
are closer to one point than all the others. The boundaries of these regions
are thus formed by taking the perpendicular bisectors of the lines joining each
point with its nearest neighbours. Continuing the bisectors until they meet
up with each other produces the Dirichlet tessellation shown in Fig. 6.16(a),
whose dual (b) is the Delaunay triangulation (c). Note that each boundary
meets up with two others; the collection of region boundaries comprises the
Voronoi diagram. This method avoids long, thin triangles formed by having

(a) (b)

NN \L\
<\>,/ // _—

(©) (d)

Fig. 6.16. The Dirichlet tessellation (a) is dual (b) with the Delaunay triangulation
(c), which provides vertex connectivity avoiding long, thin triangles (d).
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one angle very different to the other two; one example for this set of data
points appears in (d).

6.2.6 Contour Plot

Drawing a contour depends on finding the set of polylines throughout the
data domain that satisfy f — ¢ = 0, where f is the underlying function value
and ¢ is the required contour level. The obvious place to begin is on the
triangle edges, searching for pairs of vertices (p, ¢) with f, < f, that satisfy
fp £ ¢ < f,. If the edge length is L the respective distances of the contour

crossing points from p and ¢ can be found by simple proportions as in];ﬁ’ -L
q P

fq_c
fo—Fp
two edges are searched similarly. Provided the exit edge does not lie on a

boundary the contour can be followed into the next triangle and so on, until
either the starting point is found again or the contour leaves the domain. The
process is then repeated for all the required contour levels. Figure 6.17 shows
this process for the triangulations in Fig. 6.15(a) and Fig. 6.16(c). Note that

and - L. If a contour enters a triangle it must also leave it, so its other
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Fig. 6.17. Contour following for triangulations of regularly spaced and scattered
data.
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dividing a grid cell into four triangles introduces a new vertex into its interior.
The data value here can be estimated by first interpolating on the top and
bottom cell edges and then on these interpolated points.

The alternative to following a contour is to treat each cell independently,
finding all the required contours within it before moving on to the next. We can
see the essence of the difference by thinking how we might build a parallelised
contourer. One way would be to give each processor node a different cell in
which to find all the contours; another would be to give all the cells to all the
nodes in order to find one contour each. The larger memory requirement of
the latter is balanced by the extra computation requirement of the former,
due to the need to “stitch” together all the individual line segments.
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curves within cells. Image credit: IRIS Explorer, test data suite.
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When contouring within triangles, the properties described in Sect. 6.2.5 of
planes and the lines embedded within them are significant in two ways. Firstly,
the straight-line contour segments can be drawn directly between the edge
crossings without further computation, making the method quick. Secondly,
because this contour segment is embedded within the plane it is guaranteed
to represent faithfully the underlying, planar model of the data within the
triangle. This in turn ensures that contours cannot cross erroneously. Both
are useful properties, but the straight line segments may be rather obvious in
the visualization (Fig. 6.18(a)-(c)).

One way to draw curved contours would be to discover the contour-cell
edge crossing points and then thread a smooth line between them but, with
no guarantee they adhere to an underlying model of the data, these lines now
run the risk of crossing one another. A safer alternative is to fit a nonplanar
model to each cell that yields a smooth contour line within it (Fig. 6.18(d)).2
Formulae exist to generate these patches for triangular or rectangular cells;
however, the resulting contours may now be too complicated to draw directly,
requiring instead to be followed between crossing points. Figure 6.19 shows
this process for a rectangular grid cell. It is evident that more evaluations of
the underlying function are needed compared to finding just crossing points
with the cell edges, resulting in a greater computational overhead.

Before leaving the contour plot it is worth investigating why, when using
triangles as the framework, only the arrangement in Fig. 6.15(a) was used
for gridded data. Figure 6.20 shows one cell and one contour (level 4.5) of
Fig. 6.18(d), which we take as the ‘gold standard’ for this problem because it

|f-¢
/

Fig. 6.19. Tracking contours within a cell by minimising |f — ¢| normal to the
current direction of the contour’s progress. As well as computing the crossing points
with the cell edges, several function evaluations are needed at each small step along
the contour.

2 Smoothing contours across as well as within the cell boundaries can introduce
overshoot errors analogous to those in Fig. 2.21.
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represents a contour following a nonplanar approximation to the data. Inset
within Fig. 6.20 are the two contour arrangements that would result from the
triangulations in Fig. 6.15(b) and (c). Although consisting of line segments,
the lower inset reproduces the contour quite well, but the upper one does
not. Furthermore, the triangulation that reproduces the contour on the right
of the domain will fail to reproduce correctly its mirror on the left. The only
triangulation of gridded data that treats both cases equally well is Fig. 6.15(a),
which, since it consists of four triangles per cell, involves twice the work of
(b) and (c).

To conclude, we have found that even contouring 2D data involves making
choices. When using off-the-shelf visualization software, it therefore follows
that a degree of detective work may be needed to understand how the repre-
sentation was produced and to confirm it is valid. When constructing one’s
own software or application, an apparently insignificant decision at an early
stage of the visualization pipeline may lead to an inappropriate representation
later on. Problem 6.1 demonstrates what may befall the unwary.

6.2.7 Surface View

Contour plots incorporating a height key can provide quantitative information
about the data but have two drawbacks. Firstly, they only show a selection
of the data, that is, on the chosen contour levels themselves. Although we
can look at the overall visualization and make inferences about data between
the levels, if there is rapid variation and widely spaced contours, then detail

4.5

4.5

Fig. 6.20. Contouring over two triangles per cell rather than four might seem a
tempting way to reduce the work required but can lead to problems if the cell
contains a saddle point. A saddle occurs where two opposite vertices have higher
values than the chosen contour level and the other two have lower values.
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might be missed. Secondly, a contour plot requires a measure of interpretation
to understand the highs and lows of the dataset — colour can be a useful aid in
addition to a height key. Balanced against these drawbacks is the useful prop-
erty that contour plots are able to show 2D data within a two-dimensional
display. They can therefore be used to visualize a scalar variable over a man-
ifold, such as an aircraft wing, and in other situations we shall meet shortly
where the third display dimension already holds some special significance.

If there are no such constraints on the third display dimension, and ad-
ditionally if the goal of the visualization is to obtain qualitative information
about the data, then a surface view is a good technique to consider. A polyg-
onal surface is constructed whose vertices take their x and y coordinates from
the values of the independent variables and their z coordinates from the de-
pendent variable values at these points. Figure 6.21 shows the method applied
to the triangulations in Fig. 6.15. A similar approach will also serve to gen-
erate a surface from the Delaunay triangulation of scattered data that was
shown in Fig. 6.16(c).

In fact, Fig. 6.21 is only using part of the information contained in a scalar
dataset. Although the z coordinates convey the point values themselves, what
is missing is the gradient of the values, that is, the rate at which data changes.
We can see this most clearly by thinking again of the contour plot where, as
every hill-walker knows, tightly packed lines indicate a steep gradient and
wider spacing shows a slower variation in the terrain. Figure 6.22 shows the

Fig. 6.21. Polygonal surfaces for a single grid cell of the three special triangulations
shown in Fig. 6.15.
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contours of Fig. 6.18(d) overlaid with arrows to indicate gradients at the data
points.

A surface view can show this type of information — recall the discussion of
Sect. 2.1.1 on shading and highlighting to show the form of an object — but
only if we add normals to the polygons. Surface normals allow for calculating
the amount of light that will be reflected towards the viewer and therefore
how bright each facet will appear. Various schemes are employed for producing
them: they might be calculated on a per-triangle basis in the case of scattered
data, for each of the two- or four-triangle arrangements in Fig. 6.21, or with
one normal standing duty for all the triangles within a single rectangular cell.
This last arrangement fools the eye into believing all the triangles for a cell
lie in one, flat plane. However, as we can see from Fig. 6.21, this will be a
physical impossibility in all but a few cases.

All arrangements that result in one normal per facet will give a faceted
appearance to the visualization. Smooth shading of the surface is possible if
vertex normals are calculated. A common way to do this is to average the
contributions of the normals in the triangles surrounding each point. Fig-
ure 6.23 shows four different arrangements for the neighbourhood of a point
for the triangulations we have considered so far. Just as in contouring, the
chosen framework has an influence. Now, different data points are included in
or excluded from the normal calculation because each arrangement produces
a different set of neighbouring triangles. Even interpreting a simple surface

Fig. 6.22. Gradient vectors overlaid on the contours of Fig. 6.18(d). Image credit:
IRIS Explorer, test data suite.
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view may therefore involve an unknown commitment: we trust in the results
of this calculation to give us an understanding of how rapidly our data varies
and yet many visualization packages do not even make its basis clear.

Problem 6.2 is an interesting trompe [’oeil that demonstrates the superior
power of shading, compared to physical surface displacement, to convey a
sense of how data varies.

6.2.8 Height-field Plot

Fairly often we meet data for which a second scalar is defined across the 2D
domain. Superimposing surfaces is the 2D analogue of the 1D case of superim-
posed line graphs but, now that the third display axis is in use, the surface for
one scalar will occlude that mapping the other. This violates the uniqueness
principle for data-to-attribute mapping. The solution is to use another degree
of freedom in the visualization, namely colour, and this technique is known
as a height-field plot.

Figure 6.24(a) shows an example where surface height maps to a sine func-
tion and surface greyscale to a ramp function. A potential difficulty with this
technique is immediately obvious — shading, which we have seen is so im-
portant for understanding how the first scalar varies, modifies the greyscale
variation that maps the second. The result is that some of the lighter greys
(middle to high values) that are in shade appear as dark as the dark grey
colour allocated to the lowest data values. Any value-varying colourmap will
suffer similarly, and if there are brighter portions caused by specular high-
lights these will affect a saturation-varying map. Interaction to move the

Fig. 6.23. Four different arrangements of neighbourhoods of a single point of scat-
tered and gridded data.
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object helps dispel the confusion, as does the availability of colour, but a
static image rendered in monochrome may reveal little unless the changes in
luminance prior to shading are emphasised. Figure 6.24(b) shows a clearer
visualization where the data are allocated to four bands of grey rather than
using a continuous variation. Naturally this approach should be applied with
care, since improved overall insight has come at the price of understanding
the data variation within each band.

Figure 6.24(b) is reminiscent of a shaded contour plot, where the spaces be-
tween lines are filled with a single colour or distinctive pattern (Fig. 6.25(a)).
This leads to another variant of the technique, which overlays line-based con-
tours on a constant-colour surface (Fig. 6.25(b)).

Shrinking the surface displacement to zero brings us full circle to the real-
isation that a coloured surface without height is much the same as an image

il'
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(b)

Fig. 6.24. In (a), continuous greyscale variation in the presence of shading makes
it difficult to understand how the additional scalar varies, compared with (b) where
data have been allocated to one of four bands of constant luminance. Shading is still
used in (b), but local greyscale coherence helps dispel the confusion evident in (a).
Image credit: IRIS Explorer, synthetic data.

Fig. 6.25. A shaded contour plot (a) and a variant of the height-field plot that
overlays contour lines for the second variable (b), rather than colour or greyscale.
Image credit: IRIS Explorer, synthetic data.
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display. However, unlike Fig. 6.12 where data were discontinuous between
pixel blocks, now the framework used requires the data to join on at cell
edges. This in turn implies some blending between values and its effect on a
two-sided step can be seen in Fig. 6.26. Figure 6.26(a) exhibits no interpola-
tion,® whilst (b) and (c) interpolate respectively over two and four triangles
per grid cell. The two-triangle arrangement is chosen as before with consis-
tently oriented diagonals. In this arrangement the feature aligned north-west
to south-east opposes the diagonal orientation whereas its mirror matches it;
the two render noticeably differently. The four-triangle arrangement restores
the overall symmetry of the image display. Once again, the particular choice of
framework has noticeable consequences in the visualization that have nothing
at all to do with the data that was input.

(@)

(b)

(©)

Fig. 6.26. In (a), grey levels are determined as if the data values were constant
throughout each rectangular cell. In (b), greyscale is determined according to a
planar model of the data over each of two triangles per grid cell. (c¢) is produced
similarly to (b) except it uses four triangles per grid cell. Image credit: IRIS Explorer,
synthetic data.

3 Strictly speaking this is nearest neighbour interpolation and it would be more
correct to say that (a) exhibits no blending between data values.
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6.3 3D Data

With the notable exceptions of the image display and contour plot, all of
the single-scalar techniques we have met so far require a visualization whose
dimension is greater, by one, than the dimension of the independent vari-
able space. Here then is the conundrum of volume visualization, where the 3D
nature of the data domain itself uses up all the available spatial degrees of free-
dom, before any dependent variable values have even been considered. Even
using colour as an additional degree of freedom is not without its difficulties
— colouring voxels? is all very well, but only data on the outer boundary of
the volume can be seen. One of the techniques we shall meet towards the end
of this section, volume rendering,® therefore employs variable transparency of
voxels in order to try to see features on the interior of the volume but without
losing sight entirely of those near the exterior.

To understand other techniques for 3D data we can take our cue from the
contour plot, which visualizes 2D data within two display dimensions by show-
ing only a selection of it. The selection in this case is a subset of the dependent
variable values, that is, the contour lines themselves. The analogue of an iso-
line for 3D data is called an isosurface and will be described in due course.
However, we can consider another mode of selection, which is to visualize over
a subset of the independent variable domain.

6.3.1 Reduction to 2D

A simple way to obtain a subset of data with respect to the independent
variable domain is to take slices, but to do this we first need a framework.
Figure 6.27 shows the three-dimensional analogues of the grid cell and trian-
gular elements we met earlier for 2D data, sliced in various ways. In order
to obtain the data needed for visualization, the boundary polygons that re-
sult are triangulated and vertex values are interpolated along the original cell
edges from the data points. One consideration with this deceptively simple
approach is the speed of searching the cells to find the slice. Whilst not a
problem for an axial slice of a regular grid, the time taken may become signif-
icant for an arbitrarily aligned slice or a tetrahedrisation of scattered points.

A further consideration when slicing data is the more complex shapes
that can arise from a body-fitted mesh. As the name implies, a body-fitted
mesh is one whose boundary has been constructed so as to follow the outline
of some object of interest. A common application is in computational fluid
dynamics (CFD), in order to model flow past an obstruction. Figure 6.28(a)
shows a mesh constructed around an aerofoil. It originated as a regular grid

4 A voxel is the three-dimensional analogue of a two-dimensional pixel.
5 Volume visualization is the term used for the overall topic of visualizing 3D data,
whilst volume rendering is a specific technique within this field.



6.3 3D Data 91

Fig. 6.27. Various slicing operations on tetrahedra and hexahedra. The resulting
boundary polygons are then triangulated.

Fig. 6.28. Body-fitted mesh (a) used to investigate flow around an aerofoil. The
innermost slice (b) defines the shape of the aerofoil — unlike the slices of Fig. 6.27 it
is nonplanar but topologically still constitutes a slice of the domain. Image credit:
IRIS Explorer, test data suite.
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but has been distorted into the curvilinear one shown. Axial slices of this grid
may, in contrast with those of Fig. 6.27, result in nonplanar structures that
nonetheless locally are two-dimensional. Figure 6.28(b) shows the shape of
the innermost slice of the distorted mesh which, by definition, outlines the
aerofoil itself.

Planar or not, the sliced domain is now a 2D manifold (recall Sect. 5.1.2)
embedded in 3D space, whose shape and position are therefore significant in
their own right. This limits appropriate techniques to the image display or
contour plot. Both are theoretically viable visualizations for slices, but the
problem with line-based contours is the difficulty of perceiving them correctly
within the embedding volume. In the height-field plot the contours overlaid
a surface which helped understand their three-dimensional form; without this
support the contours’ apparent depth may be ambiguous and they may appear
to intersect® dependent on viewing direction. Interaction to rotate the visual-
ization undoubtedly helps resolve these difficulties, but if this is not feasible
another method should be considered first.

An image display within a volume does not suffer from these perceptual
problems but having several causes occlusion. Figure 6.29, which we first met
in Sect. 2.1.3, demonstrates the problem. Once again, interaction to rotate
the object will help and we could also consider animating the slice back and
forth.

4

Fig. 6.29. A stack of image plots is a way of visualizing data in a volume, but the
more slices are included, the harder it becomes to see their contents. Image credit:
IRIS Explorer, test data suite.

5 Contours can only truly intersect at a saddle point.
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6.3.2 Isosurface

Obtaining a subset of data with respect to the dependent variable space is a
slightly more complex concept than slicing the independent variable domain.
We start with the idea of a contour of 2D data which marks the boundary
between data of higher value than the chosen level and data of lower value
(Fig. 6.30(a)). By definition, all the data values on the contour line are the
same and are equal to the chosen level. Extruding this line and the data
surrounding it out of the plane of the paper generates a two-dimensional
surface (Fig. 6.30(b)). This separates two volumes of data, one above the
surface having values higher than the chosen threshold and one below with
lower values. On the surface itself all the values equal the threshold, hence
this structure is called an isosurface.

In order to generate this surface we return to the mesh over which the data
is defined and look again at Fig. 6.27. Although originally demonstrating the
generation of slices, we can adapt the idea there to produce polygons that
will eventually build up into the isosurface. All that is required is to adjust
each polygon’s intersections with the cell edges so as to be consistent with
the threshold sought, much as we did when finding the crossing points of the
contour line with cell edges in the 2D case.

f(x,y,z)>4

foy)<4 f(x,y,z)<4

f(x,y)=4 f(x,y,z)=4

(a) (b)

Fig. 6.30. An isoline of 2D data extruded into 3D produces an isosurface.
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For gridded data the classical algorithm for doing this is called march-
ing cubes. With eight vertices per cell there are 28 = 256 possible ways for
the isosurface to pass through. By symmetry this number can be reduced to
15 cases, 14 of which yield portions of the surface comprising 1-4 triangles
(Fig. 6.31). The particular configuration of vertices lying above and below the
required threshold acts as an index into a table of edge intersections, whose
actual locations are then determined according to the vertex values. In order
to shade the surface appropriately, the gradient of the data values is found at
each cell vertex and these too are interpolated to the intersection positions
to provide point normals at the triangle vertices. Calculating surface normals
according to the triangle geometry may well be quicker but can produce visual
artefacts as demonstrated in Fig. 6.32.

If there are two scalar dependent variables, a useful variant of the technique
is to use one variable to define the triangles and the other to colour them.
Having found the surface-edge intersections as above using the first set of
values, the second set is interpolated to these same positions and a colour
mapping is applied. This method is similar in principle to a height-field plot
but with an important difference. In a height-field plot the whole domain
of the independent variables is visualized, whereas the parts reached by an
isosurface are determined by the dependent variable values.

> <
> >
> > >
> >
> > >
> > >
< <
> >
> >
e o 0 0
< >
> >
> <
Fig. 6.31. Five of the 15 marching cubes configurations. The symbols > and <
respectively indicate the value of a vertex relative to the chosen threshold. Other

than for the first case where the surface does not intersect the cell, at least one and
at most four separated or connected triangles may be generated.
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@

(b)

Fig. 6.32. Calculating normals according to the surface geometry rather than the
data gradients produces artefacts like the one arrowed. The apparent depression
in the isosurface in (a) gives a different visual impression of how the data varies
compared with (b), even though the triangles generated are the same in the two
cases. Image credit: IRIS Explorer, test data suite.
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The original marching cubes method could produce holes in surfaces at
grid cells that have ‘ambiguous faces’. These are like the dilemma presented
in Fig. 6.20. A hole will result if two adjacent cube triangulations treat values
inconsistently on their shared face (Fig. 6.33); one way of addressing this
problem is to define subcases to the 15 major ones that ensure consistent
treatment.

Figure 6.34 shows the location of the threshold=7 isosurface for two differ-
ent tetrahedral cells, demonstrating the two distinct ways a surface can pass
through. Gradient information and data for colouring, if required, are found
analogously to the gridded case. Having defined this portion of the surface
the algorithm moves on to the next tetrahedron, gradually building up the
remainder. The apparent simplicity of Fig. 6.34 compared with Fig. 6.31 hides
the potentially difficult problem of locating the next cell in an unstructured
mesh, which can be accomplished with relative ease in the gridded case.

fold
LH cube : RH cube
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Fig. 6.33. Holes in an isosurface occur when face values are treated inconsistently
by adjacent cube triangulations.

6 6

9 9

Fig. 6.34. A tetrahedrisation of scattered data yields just three distinct cases, one
of which contains no triangles. Finding the next tetrahedron to march to implies the
connectivity between cells is known, otherwise all the cells may have to be searched
independently and the resulting surface processed to remove duplicate triangle edges.
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These methods of isosurface generation provide a cell-by-cell view of the
technique, but it is the global properties of the data that govern the na-
ture and extent of the insight that can be gained. Our first observation is
that isosurfaces work best for smoothly varying data, otherwise the surface
for a single threshold value may comprise many fragments generating little
insight. Provided the data is sufficiently smooth, isosurfaces can be of two
broad types, each requiring a different approach if we are to get the best out
of this technique. Figure 6.30(b) demonstrates an isosurface with open form,
the three-dimensional analogue of a contour which enters and leaves the do-
main via its boundaries. The counterpart of a contour which circles a hilltop
in 2D or encloses a valley bottom is an isosurface with closed form, rather like
a child’s balloon that marks the boundary between low-pressure air outside
and the high-pressure air inside. These different forms are significant if we
want to draw several isosurfaces at different threshold values. The open form
is quite amenable and, provided the individual surfaces are distinguished by
means of labels or colour, can generate insight into the overall variation of the
dependent variable values (Fig. 6.35).

The closed-form isosurface is another matter — concentric contours in a 2D
plot represent little difficulty perceptually but in the 3D case the equivalent is
like a ‘Russian doll’: nested surfaces that have to be peeled away to understand
what is inside. Rendering successive thresholds as semi-transparent surfaces
can help, but the technique does not scale to several threshold values nearly as
easily as its 2D counterpart scales to multiple contour levels. As in Sect. 6.3.1

0.9

Fig. 6.35. A few well-chosen isosurfaces will show the data variation quite well
when they are of open form. Image credit: IRIS Explorer, test data suite.
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the problem again is one of occlusion. In visualization the difficult question is
not necessarily what to put in but what to leave out. We could use animation
as before, not now of the slice position but of the surface’s threshold value. In
both cases we can think of animation as an extra degree of freedom. Although
usually associated with visualizing the independent variable ‘time’, here it is
helping to alleviate visual clutter in a static dataset. Problem 6.4 investigates
these alternatives for visualizing several closed-form isosurface thresholds.

6.3.3 Volume Render

In contrast with the previous techniques, volume rendering does not involve
subsets but treats the whole domain as a translucent, multicoloured gel. The
problem of visualization is not now to make a polygonal representation of
the data but to find out the colour and intensity of light travelling towards
every part of the two-dimensional view plane. Each small particle of the gel
can be considered both to reflect light towards the viewer and to absorb light
already on its way that passes through it. This principle is captured for a
single particle ¢ by the equation

Cout = Ci (1 - ai) + CiOéi (61)

where Cj, and C,,; respectively denote the light intensity before and after
its encounter. The intensity C; is derived from the particle’s assigned colour
and shading with its opacity «; moderating the overall contribution it can
make to Cyye. It is very easy to see from this formula something that we
know intuitively must be true, that more opaque particles will reflect and
absorb more light than less opaque ones. If we set & = 1 the particle becomes
opaque, makes maximum contribution to C,,; in its own right but doesn’t
let any of Cj, through. Setting o = 0 makes the particle fully transparent,
so now it cannot make any contribution of its own regardless of its intrinsic
colour; hence C,,; = C;,. Colour and opacities are assigned to the data in
a process called classification, which may be organised to partition the data
into categories, or to emphasise areas of change. Figure 6.36 shows a mapping
of greyscale and opacity for the data originally shown as an isosurface in
Fig. 6.32. The classification has been organised to divide the data values into
three, more-or-less arbitrary, ranges.

Once the data has been classified, (6.1) has to be implemented for all the
particles. Figure 6.37 shows the process of ray-casting: rays are fired from
each image pixel through the volume, which is sampled at regular intervals by
interpolating from the cell vertices. Repeated application of (6.1) composites
the samples to give the total contribution to the pixel.
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Fig. 6.36. Greyscale classification and corresponding opacity classification of the
data of Fig. 6.32, used to produce Fig. 6.39.
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Fig. 6.37. In ray-casting a ray is fired for each image pixel into the volume. Samples
along the ray are obtained at equal intervals by interpolation from the data points.
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Fig. 6.38. In splatting, footprints are weighted by the voxel values and accumulated
into the image.

Fig. 6.39. Volume render of the data in Fig. 6.32 using Gaussian (bell-shaped)
splats with greyscale classification and opacity classification according to Fig. 6.36.
Image credit: IRIS Explorer, test data suite.



6.3 3D Data 101

Ray-casting is termed an image-order method, since it maps from image
to volume. An alternative method, splatting, works from volume to image. It
views the volume as a set of overlapping but nonetheless individual contribu-
tions positioned at voxel locations. The projection of each contribution to the
image, called a footprint, determines the image portion that is affected by that
voxel. The different contributions are then accumulated for each pixel within
the footprint. Figure 6.38 illustrates the process and Fig. 6.39 shows the re-
sult, using the classification in Fig. 6.36. Splatting was developed to make
volume rendering possible at interactive rates, though hardware and software
developments mean that the performance gap between the two methods is
closing.
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Problems

6.1. Run the provided software demonstrating contouring of gridded data over
triangular and rectangular meshes. What methods were used (consider both
the framework and the model fitted to the data) to produce the upper, middle,
and lower contour plots? To what extent would each be regarded as a correct
depiction of the data?

6.2. Run the provided software demonstrating the use of normal information
to generate shading on a surface view. Rotate the object, which shows one
peak and one trough, back and forth through a moderate angle to understand
its form. Now rotate it through a larger angle — do you notice anything odd
about this surface view? Switch on the second surface. What do you notice
about this new object, compared with the first?

6.3. Run the provided software comparing isosurfaces and volume rendering.
What three isosurface threshold values do you think correspond most closely
with the features that are picked out in green, yellow and orange by the volume
render technique?

6.4. Run the provided software comparing semi-transparent isosurfaces with
an animation of different threshold values. Set the isosurface values you found
for Prob. 6.3 and adjust transparency so you can see all three surfaces. Does
this visualization remind you of another technique for visualizing volumes?

Now compare this visualization with an animation that shows all the
threshold values in between. You may need to watch it several times to ob-
tain a good overall impression. Where would you use the static technique and
where the animated one?
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Visualizing Vectors

Vectors are another type of dependent variable commonly encountered in visu-
alization, and they afford a variety of interpretations. They may, for instance,
describe the deformation a beam undergoes as a load is applied, or the rate
of change over time of the concentration of a chemical in a reaction. However,
the most common application by far is to understand flow, often the output
of computational fluid dynamics (CFD) calculations, but also encompassing
electromagnetic, as opposed to velocity, fields. This chapter will especially
concentrate on this area, and in particular the case of steady, or stationary,
flow. Visualization of unsteady flow is a specialist area beyond the scope of
an introductory book — some pointers to further sources are given in Chap. 8.

Regardless of the application, all vectors are characterised by having a
magnitude (a scalar quantity) and a direction defined according to some co-
ordinate system. Vector data that is output from a simulation is therefore
commonly described in terms of its individual components along each of the
system’s axes. As well as the familiar Cartesian system, which is typically
the one supported by most visualization systems, in Sect. 5.1.2 we saw polar
coordinate systems for 2D and 3D. These latter two are quite commonly used
in simulation, so often the first step to visualization is therefore a conversion
between the two, in order to obtain data in a form the system can handle. For
scalar dependent variables this will involve converting how the data locations
are held (recall that positions are vectors too), whilst for vector dependent
variables it will additionally entail converting the different vector components.

In scalar visualization the display dimension was generally found to be
one greater that the independent variable dimension, so a natural order in
which to approach the techniques in Chap. 6 was according to the dimension
of the data domain. For vector data the situation is different, with the display
dimension governed instead by the number of vector components. The sections
within this chapter thus follow a repeating pattern, with visualizations of two-
dimensional vectors preceding three-dimensional ones. Overall the approach
is to deal first with point-based direct visualizations of flow since in principle
these need no interpolation and therefore no underlying framework. These
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are followed by techniques that construct geometric objects to give a sparse
representation of the flow and lastly flow textures, which provide a dense
representation. The chapter closes with some cautionary remarks regarding
unsteady flow.

7.1 Arrow Plot

An obvious and intuitive visualization of vector data is to draw arrows — the
arrow length can signify the magnitude of the velocity whilst its direction
helps understand the relative sizes of the different components. In its simplest
form an arrow is placed with its base at each of the data points, so no interpo-
lation is required, and an overall impression is given of the flow. Figure 7.1(a)
shows this technique applied to the electromagnetic field around two dipoles.
Figure 7.1(b) shows an alternative, a hedgehog, which dispenses with the ar-
row head in order to reduce cluttering of the visualization. In this case the
vector’s direction may be coded by fading the line from its base to its head.

Even such a simple visualization of two-dimensional vectors entails some
risks and possibly some trade-offs of insight versus accuracy. For instance, it
is common to apply a scaling factor to the magnitudes in order to generate
optimum length arrows, that is, accommodating the largest magnitudes in the
dataset but still allowing us to see the smallest. This latter requirement may
still produce arrows for the largest-magnitude vectors whose heads approach
their neighbours’ bases, as in some parts of Fig. 7.1. The overall effect can
divert visual interest along the vector direction, moving it away from the data
positions that are genuinely associated with these large values. One solution
may be to use arrows of equal length but whose widths indicate vector mag-
nitude, whilst another places identical arrows but colours them according to
magnitude. Distributing arrows differently across the domain is yet another
possible approach: subsampling a regular grid is generally easy but may mask
rapid variations in the data; resampling onto scattered points can solve per-
ceptual problems arising from the regularity of the data grid but will involve
interpolation of the original data values. These variants require some care in
their application since subsampled or resampled points may depict a different
range of data to the original values, both in terms of the independent vari-
able values and the dependent variables. In general, bounding boxes and data
ranges applying to colour maps should reflect the whole dataset, even when
they are employed to visualize a subset.

When the vectors are three-dimensional, additional considerations come
into play. Arrows drawn as lines can be difficult to perceive, due to the lack
of depth cues: a short arrow apparently upright in the image may in fact be
a long horizontal arrow foreshortened by perspective. Interaction to rotate
the scene will help as we have seen before, as will the construction of solid
arrows since shading helps convey orientation. Solid arrows also carry colour
information more readily than lines, due to their greater surface area, though
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Fig. 7.1. The electromagnetic field around a pair of dipoles, visualized (a) using

line arrows and (b) using lines with no arrowhead. Image credit: IRIS Explorer, test

data suite.
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the potential for shading and highlighting apparently to modify colour (recall
Sect. 6.2.8) must be considered. Before we leave the arrow plot and its variants
we also note that colour, already described as an alternative to arrow length
for conveying magnitude, can of course alternatively map any scalar variable
defined across the domain such as fluid temperature and pressure.

7.2 Streamline and Timeline

Just as in the scalar case, visualizations of vector data involving positions in
between those given will require a framework over which to interpolate. For
regular data a point’s neighbours are used as before to construct a quadrilat-
eral (2D domain) or hexahedral (3D) mesh. If data are scattered a triangula-
tion or tetrahedrisation is used. Additionally, techniques that have their roots
in particle tracing will require data to be integrated, since the velocity v of
particle p at any instant is equivalent to the rate of change of its position p,
i.e.,

dp
ot
Figure 7.2(b) demonstrates the first-order numerical solution of (7.1), where
tiny timesteps At are used to advance the particle, based on the interpolated
velocity at each previous position. In practice greater accuracy usually requires
the use of higher-order integration schemes. The accuracy of the interpolation
scheme used to blend between data values (recall the scalar case of Fig. 6.26)
may also be an issue.

In fact, the particle path in Fig. 7.2 should look familiar, because it is the
same as the trajectory we met in Sect. 5.1.3, Fig. 5.4. The integration of (7.1)
has produced 1D ordinal position data with independent variable ‘time’ from a
vector field that doesn’t vary. Animating the particle’s movement is a natural
way to understand the flow, provided the timesteps are equal. The potential to

\4

(7.1)

Aty ¥

/ y
(a) (b)

Fig. 7.2. Point-based direct visualization with arrows (a) requires no interpolation
of data values. Tracing the route (b) of particle p, on the other hand, requires both
interpolation and integration of the velocity field.
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attribute this animation wrongly to a time variation of the underlying vectors
is, however, obvious and is why such fields are referred to as ‘steady’, or
‘stationary’. The ‘steady’ adjective supports the idea that time progresses and
particles move, but they are transported through a flow which is unchanging
in its form.

In a steady flow, the particle follows a streamline of the velocity field
which is everywhere tangential to it. Figure 7.3 demonstrates this idea, with
a 2D flow that simply goes round in circles at constant speed throughout the
domain.

As suggested above, magnitude (the speed of the flow) and direction (in
this case, does it flow clockwise or anticlockwise) can be conveyed by animat-
ing particles along the streamline. If animation is not available, then, since
magnitude is a scalar quantity, the streamline may be coloured to indicate
speed. If colour has already been used to indicate some scalar other than
speed, alternatively a snapshot of several particles at different instants will
convey speed via their spacing. Indicating the start of the streamline as the
seeding position allows the flow direction to be inferred (Fig. 7.4).

Another way of representing flow with lines is to join a set of particles
released at the same time. Figure 7.5(a) shows four streamlines of the vector
field in Fig. 7.3(a). In Fig. 7.5(b) are the timelines formed by connecting the
seed points of these streamlines and taking snapshots as they follow the paths.
Timelines are familiar from the athletics track (Fig. 7.5(c)) as the curved
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Fig. 7.3. A velocity field (a) with one of its streamlines (b). The streamline is every-
where tangential to the flow: vectors lying along it (just two are shown) represent
the instantaneous directions of a particle as it follows this path. Image credit: IRIS
Explorer, test data suite.
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starting positions s that ensure all runners cover an equal distance during
the race. If everyone were to run at the same speed, as in this example, they
would all cross the finish f at the same time.

7.3 Streamribbon, Streamsurface, and Streamtube

Streamlines transfer in theory to three-dimensional vectors but, just as for
line arrows, there are perceptual difficulties due to a lack of depth informa-
tion. One solution is to render the streamline as geometry that can be shaded
to produce the necessary cues — Fig. 7.6 compares a line-drawn streamline
through a 3D domain with one drawn as an extruded circle. Many polygo-
nal streamlines might, however, be costly to render or cause occlusion; hence
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Fig. 7.4. A snapshot of several particles emitted at equal intervals from a seed
position demonstrates the speed of the flow (constant, here) and its direction. Image
credit: IRIS Explorer, test data suite.

Sle

Fig. 7.5. Streamlines (a) of the circular vector field in Fig. 7.3 and timelines (b)
formed by joining particles released into this flow at the same time and following
their progress. If speeds are constant, each timeline cuts off the same distance (c)
measured along each streamline.
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illuminated streamlines were developed to address these problems. They em-
ploy line segments but use the texture mapping hardware of modern graphics
workstations to generate shading and partial transparency at interactive rates.

Other approaches based on streamlines also draw extended objects, not
just for perceptual reasons but specifically to examine some particular char-
acteristic of the flow. Streamribbons can be useful for understanding rotation
in flow. They may be constructed either by tiling the space between two ad-
jacent streamlines or by extruding a line along a single streamline to define a
narrow two-dimensional strip. The orientation of the line is controlled by the
vorticity of the flow (Fig. 7.7).

(b

Fig. 7.6. Streamlines passing through a 3D domain drawn (a) simply as lines. Depth
is hard to perceive and the line appears to intersect itself, which it cannot do if it
is always tangential to the vector field. The same streamline drawn as a polygonal
tube (b) can be rendered with shading and hidden surface removal. Image credit:
IRIS Explorer, test data suite.
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A streamsurface which, like a streamline, is everywhere tangential to the
flow, extends this idea further. It may be constructed by tiling the space be-
tween adjacent streamlines or be calculated directly from the flow itself. Fig-
ure 7.8(b) shows a streamsurface calculated from the streamlines in Fig. 7.8(a).
Note how the three-dimensional flow is quite difficult to understand from the
streamlines, but lighting and shading of the streamsurface reveals a noticeable
bulge around the vehicle. A variant of this technique restores the sense of flow
direction by cutting out arrow shapes (stream arrows) from the streamsurface.

If the line of seed positions forms a closed loop the streamsurface bends
round to form a streamtube. Note however that this is not necessarily equiv-
alent to the polygonal tube of Fig. 7.6, which was generated by sweeping a
circle along a single streamline, much as the ribbon of Fig. 7.7 was created
by sweeping a line along whilst rotating it. Polygons swept along a streamline
(sometimes called stream polygons) can help to visualize quantities derived
from the flow at points along the streamline. A simple case would be to sweep
a circle whose radius showed flow speed, but the surface generated might not
be tangential to the flow, as it must be in the case of a streamtube.

7.4 Time Surface

Timelines also apply in theory to more vector components but with analogous
problems to those faced by streamlines in three dimensions. To obtain a useful
variant of timelines we have to place several seed particles on a (usually) planar
surface and see how this surface moves in the flow. As before, this is steady flow
and variation over time is a consequence of the integration process in Fig. 7.2.
Figure 7.9 shows how a regularly shaped starting surface representing the
positions of 32 closely spaced particles becomes distorted as the air carrying
it is pushed aside by the vehicle.

"N

Fig. 7.7. A streamribbon demonstrates flow rotation by extruding a line along a
streamline. Image credit: IRIS Explorer, synthetic data.
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(b)

Fig. 7.8. A streamsurface can be constructed from several streamlines and, since it
can be lit and shaded, helps to understand how the flow moves towards the viewer
in the vicinity of the vehicle. Image credit: IRIS Explorer, test data suite.

t=2At

t=0

Fig. 7.9. A planar and rectangular surface remains planar as time progresses but
its right-hand edge is distorted inwards in the vicinity of the vehicle.
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7.5 Flow Texture

Arrow plots show the velocity field across the whole domain, but it may be
difficult to understand the form of the flow. Techniques based on particle
tracing, on the other hand, may give a good impression of the flow but are
highly dependent on choosing seed points which generate interesting stream-
lines. Flow textures try to give a dense representation of the flow which also
conveys a sense of its form. In appearance the technique is reminiscent of
paint in a container whose surface has been flecked with a contrasting colour.
Stirring the paint with a narrow blade spreads the flecks in the direction of
the flow, leaving a lasting imprint. Figure 7.10(b) shows a flow texture of
the velocity field in Fig. 7.10(a) produced by line integral convolution. This
method of calculation spreads a texture out mathematically along multiple
streamlines within the flow. An earlier approach was to elongate spots in the
vector direction, whilst recent approaches have utilised texture hardware in
graphics workstations to render blended noise images distorted according to
the flow.

Extension of these types of technique to three dimensions runs into two
main difficulties. Firstly, until recently the computation time required, even
in two dimensions, was such that in three dimensions it would become pro-
hibitive. Secondly, filling a volume with many spots or streaks representing
the flow would generate a problem akin to volume visualization, which is itself
a major undertaking. These issues are being addressed by current research but
in off-the-shelf software it is still common to find flow texture techniques es-
sentially limited to two-dimensional situations. Visualization of a 2D domain
as a two-dimensional manifold within three-dimensional space may be catered
for, or it may be possible to apply a 2D flow texture to a streamsurface ob-
ject. Beyond these, some care is required: slicing a 3D domain and applying
a technique that is only appropriate to two-dimensional vectors effectively
ignores the vector components normal to the slice. The extent to which this is
an approximation depends very much on the velocity field being analysed. In
these situations, use of flow textures with other techniques described in this
chapter may give the best combination of insight and veracity.

7.6 Unsteady Flow

In steady flows the trajectory followed by a single particle is the same as
a streamline, and many particles released successively from the same seed
position will spread out along one streamline as in Fig. 7.4. In unsteady flows
we can still draw the trajectory through the domain of a particle released at
a particular time, but the flow it experiences towards the end of its travel is
not the same as it was at the beginning. Another particle released a short
time after it will not therefore follow the same path. Joining up several such
particles with a line now generates not a streamline, but a streakline. The
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field in (a). The texture emphasises streamlines in the velocity field but without the

Fig. 7.10. Flow texture (b) generated by line integral convolution of the velocity
need to choose seed points. Image credit: IRIS Explorer, test data suite.
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concept of a streamline is still valid but only for a snapshot of the flow, as if it
were frozen at some instant in time. Animating the development of a streakline
can be a useful way to understand an unsteady flow but it should be noted that
animating a sequence of instantaneous streamlines is not equivalent. The latter
neglects development between timesteps, in much the same way as a slice that
neglects orthogonal vector components treats three-dimensional vectors as if
they were two-dimensional. A number of the most promising developments to
date for visualizing unsteady flows are in the area of flow texture synthesis
and some pointers to further reading are given in Chap. 8.
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Problems

7.1. Run the provided software demonstrating the effect of interpolation when
generating streamlines. First adjust the pitch of the spiral in order to under-
stand the role of the parameter a. Now change the interpolation scheme and
then adjust the height at which the seed particle is released. What do you
observe and what is the likely explanation?

7.2. Run the provided software demonstrating flow within a double glazing
panel. Identify the two techniques in use and describe why this visualization
is an approximation. How significant is the approximation in this case?
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Bibliography and Further Reading

Introduction

A fascinating survey of pre-computer visualization is given by Collins [15]. He
concludes that, whilst there is little in computer-generated visualization that
is new in terms of techniques, computers do nonetheless make visualization a
possibility for large quantities of data. Some useful insights into the factors
contributing to the rapid development of computer visualization in the late
1980s are given by Brodlie in [3].

The National Science Foundation report edited by McCormick, DeFanti
and Brown that so concentrated minds and effort can be found at [38]. This
report gave us the famous “fire hoses’ of data” quote that has become the
mantra of scientific visualization.

Potential and Pitfalls

A comprehensive but approachable book on how we perceive space, objects,
movement, and colour is by Gregory [21]. On discussing animation I have sub-
stituted the term ‘beta movement’, where Gregory uses ‘phi phenomenon’; on
the basis of Wikipedia’s article [64] and associated links. A complementary
reference to Gregory on our perception of the three-dimensional form of ob-
jects is by Haber [23], who also gives an account but with special consideration
of the requirements for visualizing scientific data.

Gregory’s book is home to a whole host of further reading about vision,
including a reference to Grimes’s work [22] on hiding scene changes during
the eye movements we call saccades. The increasingly outrageous changes in
images that Grimes was able to pass by his subjects without them noticing
makes for interesting reading and leaves us wondering just what ‘sleight of
eye’ may be possible in this age of digital image enhancement.

All of Edward Tufte’s exquisite books are a must-read for anyone aiming to
present data visually. I found his Visual Display of Quantitative Information
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[55] especially helpful on ‘graphical integrity’, one aspect of which is the mis-
use of chart perspective described in this chapter. Note, however, that Tufte
eschews pie charts, even flat ones!

Brodlie [1] (pp 38-39) characterises the filter process of the dataflow visu-
alization model as one which attempts to reconstruct what is underlying the
data. The importance of what underlies the data, but now with an emphasis
on controlling interpolation, is also the topic of Brodlie and Mashwama [7].
As well as putting forward the mathematics of the subject for 1D, 2D, and
3D data, they include some surface views that show analogous behaviour to
the line graphs of Fig. 2.21. Satisfying bounds is also the subject of Brodlie
et al. [4] but here data values in between those given are interpolated by a
summation of basis functions defined across the whole domain, rather than
piecewise within the cells of a mesh joining the points.

Models and Software

Wright [68] and others have described computational steering as an extension
of the standard dataflow pipeline. Following the NSF report [38] there was a
good deal of work to realise computational steering, with papers appearing
in the literature that covered both systems developments and applications of
steering (see, for example, [8, 30, 37, 60]). In a sense, computational steering
was a solution waiting for a problem; a criticism commonly levelled at it was
the small number of interesting simulations that could be tackled in real time.
With the advent of grid computing (see, for example, [19]) computational
steering has experienced an upsurge of interest (see, for example, [5, 44]).
Grid computing, with its greater access to computational resources, offers the
prospect of studying a much wider range of more complex problems than
was hitherto possible. Much of the work in the UK takes place under the
umbrella of the Research Councils’ e-Science programme and proceedings of
the e-Science ‘All Hands’ meetings are published annually. Their web sites are
noted in the Appendix.

Wood’s PhD thesis [67] investigates a number of different approaches to
collaborative visualization and client—server visualization, dealing with the
issues that were raised in Sect. 3.2.2. Before doing so he first gives a thoroughly
lucid summary of the various models of visualization that were developed in
the late 1980s and 1990s. He also demonstrates very clearly the relationship
between the Haber and McNabb [25] and Upson et al. [56] approaches to
constructing a dataflow model for visualization. An excellent report on the
state-of-the-art in distance and collaborative visualization is given by Brodlie
et al. [6].

The framework for describing visualization software that is presented in
this chapter is a combination of the approach put forward by Gallop [20]
and Brodlie [3]. Upson et al. describe very clearly the drivers leading to their
development of AVS in [56]. A summary of what constitutes an MVE and
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descriptions of the five original MVEs described in Sect. 3.3 are given in
[13]. For readers wanting comprehensive descriptions of current software there
are chapters on amira, AVS/Express, IRIS Explorer, ParaView, SCIRun and
VTK, amongst others, in [26]. These chapters and the URLs noted in the
Appendix for each of the organisations or software products mentioned were
the major source of information in compiling the section on software. IRIS
Explorer, the particular visualization software used to produce the screenshots
in this book, is described by Walton [61].

Colour in Scientific Visualization

Once again, Gregory [21] gives an extremely readable account of how we
perceive colour, including a flavour of some of the historical debate that sur-
rounded this field. Hearn and Baker’s book on computer graphics [27] also
includes a very useful chapter (Chapter 12) on colour with its main focus on
colour models. They also cover the HLS model (hue, lightness, and satura-
tion), which is not included in this book but may often be found in software
packages as well as or in place of an HSV representation. Haber [23] has some
useful insights on the nonlinearity of colour perception and its consequences
for scientific visualization.

A number of interesting points made by Gregory [21] compare vision with
some of the other senses. One relates to the perception of a single colour as a
mixture of responses by different receptors and emphasises how fundamentally
different this is to our separate perception of sounds of multiple frequencies.
Thus in a chord of music we will hear the differently pitched notes quite sepa-
rately whereas in colour the different cone cell responses combine to produce
one sensation. Another remark deals with the frequency of the stimulus. For
light, sensing the very high frequencies involved requires a system of chemical
intermediaries, the cone cell photopsins. Contrast this with our sense of touch,
where textures are perceived by the stimulation of skin mechanoreceptors that
are directly connected to nerve fibres. One consequence is that in computer
systems, visual refresh rates can be rather lower than those needed for haptic
display.

In the discussion of colour perception I have used the terms short-,
medium-, and long-wavelength receptor (see, for example, [65]) as well as
the terms blue, green, and red cone cells, since both are in common usage in
reference material. The peak cone sensitivity values used to draw Fig. 4.2 are
from [65].

There is a great deal of material available on the subject of colour vision
deficiency; unfortunately not all of it is completely consistent in its use of ter-
minology. The prefixes prot-, deuter-, and trit- are invariably used to refer to
the long-, medium-, and short-wavelength (‘red’; ‘green’, and ‘blue’) systems
respectively but usage of the suffixes -anope (the person), and -anopia and
-anomaly (the degree of deficiency) varies. Thus, some will apply the term



120 8 Bibliography and Further Reading

‘protanope’ only to someone with protanopia (implying an extreme form)
whilst for others it will include someone with protanomaly. Yet others use
only ‘-anopia’ forms rather than making a distinction by means of ‘-anomaly’
forms. This can be confusing for someone venturing for the first time into
the material. However, Gregory [21] and others clarify by describing extreme
forms of colour vision deficiency as those where only two primaries are needed
to match the range of seen colours, and less extreme forms as needing three
primaries but in different proportions to the usual.! Given the subtle differ-
ences to be seen in various descriptions in the literature, these fundamental
principles may be more helpful in understanding sources than attempting a
strict distillation of terms.

The idea of colour vision deficiency as a lower-dimensional gamut also
occurs in Rasche et al. [49], where a process for re-colouring images is described
not only with these viewers in mind but also for publication in greyscale.
Their work concentrates on preserving both colour and luminance differences
and will be particularly helpful when conveying luminance-balanced images
in greyscale, since the usual translation based only on Y will of course result
in no detail being captured.

I do not have a colour vision deficiency, but I know a number of people who
do. In trying to understand their experiences it has been worthwhile looking at
various internet sites that convert images to use a reduced palette of colours.
The address of one site, Vischeck, is noted in the Appendix and includes
links to a number of others. When viewing any such images, though, bear in
mind the caveats in Sect. 4.2 and resist attempting a simple ‘translation’ to
apparent colour equivalents.

In the section demonstrating the effect of colour on perceived brightness,
the idea of showing the locus of constant R+ G + B as a plane perpendicular
to the line of greys is due to Bunks’ Figure 5.5 [11], from which it follows
naturally to represent constant luminance as a tilted plane. Our respective
graphical comparisons of the RGB and HSV colour models were achieved
independently but it is gratifying to see their similarity. The coefficients I use
for the luminance calculation are described by Poynton [47].

My line drawings of the inverted cone for the HSV model do not reproduce
Smith’s hexcone [51] since for simplicity I have taken the hue disk to be
circular. There should be no loss of generality, however, since the depiction of
the axes in these figures is conceptual, that is, the geometry of the solid is not
used to calculate the value or saturation of any actual colours. The screenshots
and software, on the other hand, do show the origin of the hexcone in the six-
sided saturation surface and the orthographic projection of the value surface.

Figure 4.14, which shows a distorted RGB cube standing on its black
vertex, was derived by judging very approximately the relative differences
of various-hued colour maps on my own computer monitor. Since generating

! The term ‘dichromacy’ may also be seen for needing two primaries and ‘anomalous
trichromacy’ for needing unusual amounts of three primaries.
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this figure I have become aware of other representations of three-dimensional
gamut solids (see, for example, [29, 39, 50]) that are similar in appearance but
undoubtedly better founded. The colour spaces mentioned in these sources are
an initiative of the Commission Internationale de I’Eclairage (CIE) to develop
descriptions of colour that exhibit better perceptual uniformity than those
based on RGB, HSV, and other similar models. As mentioned in Sect. 4.4,
colour mapping in a perceptually uniform space would make the specification
of linear colour maps much easier since, by definition, such spaces aim to
make equal distances result in equally noticeable changes in the colour that
is seen. As well as demonstrating gamut mapping the last reference in this
list also plots a yellow-blue colour map within a perceptually uniform space
according to the device’s RGB coordinates. Remarkably, the sequence points
that are regularly spaced in RGB exhibit roughly a 3:1 variation in length
when measured in perceptual units. This brings home a point that must be
understood very clearly, which is that the strategies put forward in Sect. 4.4.3
can only go some way towards compensating for the perceptual shortcomings
of RGB and HSV. Until software adopts colour specification in terms of uni-
form spaces expressed for the device in question, we have to accept that truly
reproducible and linear colour mapping for visualization is an unattainable
goal.

Choosing Techniques

In describing data systematically I have followed the recommendations made
by Gallop [20], separating the independent and dependent variables first and
avoiding rolling their dimensions together. Thus, for example, in this book
a contour plot and a surface view are both described as techniques for 2D
scalar data or, occasionally, “2D techniques.” Some sources, however, will call
the latter a “3D technique,” not because it can handle 3D data but because
it requires three display dimensions to draw it. Likewise a 2D bar chart, the
name given by Brodlie [1] to a technique for 2D nominal scalar data, is used
in preference to “3D bar chart,” which is how it will sometimes be described
elsewhere. The convention used thus tries to avoid confusion by having numer-
ical dimension labels reflect only the properties of the data domain, whether
or not they are describing the data or the technique visualizing that data.
This enumeration may differ from the degrees of freedom required for visu-
alization, which in turn comprise the display dimensions in use (equivalent
to the spatial dimensions of the AVO), plus colour and possibly animation
(AVO attributes). To further underline the distinction, the number of degrees
of freedom are always written literally.

Underpinning this approach is a heavy dependence on thinking about data
in the abstract, rather than via its visualization, a point that is stressed
throughout this chapter. This is accomplished by classifying data as an in-
dependent variable space with dependent variable space(s) attached at each
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point, ideas that draw on the mathematical theory of fibre bundles as put
forward by Butler and Pendley [10]. Fibre bundles are further described and
are used as a basis for a visualization data model by Haber et al. [24]. The
two parts of [24] thus relate back to the two scenarios of Fig. 5.1: fibre bun-
dles are particularly useful when considering the mathematical model of a
problem whereas its numerical solution produces discrete data that must be
accommodated in a data model if we are to visualize it.

Once the data has been classified, adopting a taxonomic approach to choos-
ing techniques owes much to Brodlie [1], but with the inclusion of trajectories
suggested by the canonical graphic representations in Butler and Pendley [10],
Table 1. Dispensing with the ‘point’ type in [1] in favour of a description as 1D
nominal vector data is consistent with later refinements proposed by Brodlie
[2] to enable greater separation between the data and the means of viewing
that data. Scatterplots are thus seen as near relatives of trajectories (1D or-
dinal data), but with a display that is reduced to points due to nominal data
having no inherent order. Unlike [1] and [2], however, I do not attempt any
formalism other than to introduce the concept of manifolds instead of the
notion of a restriction operator for data and views.

Visualizing Scalars

Modelling data over triangles and tetrahedra underpins much of visualization.
Nielson’s survey [41] compares a number of algorithms for triangulation and
tetrahedrisation and describes a variety of interpolants constructed to fulfill
different aims. As well as providing a comprehensive treatise in itself, this
work also includes a bibliography of more than 250 further sources.

The broad division of contour methods into those that follow isolines and
those that treat each cell in turn is described by Snyder [52], though the
driving factors then (1978) were not memory versus computation resource but
memory versus plotter pen travel. When re-reading the literature of the time
it is interesting to observe how distant we have become from the computer
hardware in the intervening years.

Powell and Sabin [46] note the value of contouring a function with C*!
continuity in order to generate isolines with direction continuity, compared
with the ad hoc approach of threading a smooth curve through the crossings
of the contour lines with the cell edges. However, their ultimate aim is to use a
parametric form to follow the contour of a piecewise quadratic approximation
over triangular elements, rather than to track contours by progressive approx-
imation. Preusser [48] describes finding zeros of f — ¢ (Fig. 6.19) by searching
with regula falsi normal to the curve of the contour. Contours are generated
in topological sequence on a cell-by-cell basis and the method is generally ap-
plicable to nonlinear interpolants within linearly bounded domains. The par-
ticular focus of [48] is bicubic interpolation within rectangular cells, whereas
Fig. 6.18(d) is equivalent to tracking the bilinear interpolant (CY continuous);
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hence contours are not smooth across cell edges. The potential for the bicubic
interpolant to exceed bounds is discussed by Brodlie and Mashwama [7], who
demonstrate the visual effect using surface views.

Snyder [52], Cottafava and Le Moli [16], and Crane [17] all describe con-
necting contour intersections on rectangular cell edges with straight lines.
Each algorithm results in a different strategy for resolving the ambiguity
caused by having an intersection on each cell side, which is how the dilemma
of Fig. 6.20 is more usually presented. Brodlie [2] points out that joining
intersections with straight lines when the interpolant is bilinear is itself an
approximation, even for cases with no ambiguity, and affirms the approach of
dividing each cell into four triangles as a means of resolution (cf. Fig. 6.18(a)
to (c)).

On the value of gradient information in understanding data, Haber and
McNabb [25] describe a surface view constructed of polygons whose vertex
z coordinates are a nonlinear function of the data values and whose vertex
normals are directly defined by the data gradients. This decoupling of the
physical surface generation from the normal generation was the inspiration
for the demonstration of shading comprising Prob. 6.2. However, in the latter
the normals are generated from the geometry that would have been produced
by the surface displacement, rather than directly from the data.

A useful review of recent advances in volume visualization is given by
Brodlie and Wood [9]. This paper also establishes the framework that is ap-
plied here and clarifies terminology. A good reference for readers aiming to
begin research or development in this field is Chen et al. [14].

Marching cubes is described in Lorensen and Cline’s seminal paper [36].
Wilhelms and Van Gelder [66] and Nielson and Hamann [42] each identify
‘ambiguous faces’ created by the approach in [36] as potentially leading to
‘holes’ in the isosurface. Both aim to fix the problem by defining subcases,
though in different ways. These references deal with the topological correctness
of the resulting surface; other work to improve the robustness and accuracy
of the method is surveyed in [9)].

The treatment of a volume as a composition of particles, each of which
reflect and absorb light, follows the description by Mueller et al. [40]. Equa-
tion (6.1) is sample compositing in back-to-front order as described by Levoy
[33], but dropping the X suffix for simplicity as suggested by Brodlie and Wood
[9]. Front-to-back compositing and the potential it brings for early ray termi-
nation in volume rendering is one of the efficiency improvements to ray-casting
discussed by Levoy [34]. The splatting algorithm was proposed by Westover
[63] to improve efficiency of volume rendering over ray-casting approaches. As
Mueller et al. observe [40], its advantages accrue from the potential to pre-
compute the footprints and the effective restriction of interpolations to 2D,
compared with the more expensive 3D reconstruction of ray-casting.
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Visualizing Vectors

Good overviews of flow visualization in general are by Post and van Wijk [45]
and by Weiskopf and Erlebacher [62]. Both also include sections on feature-
based visualization, which is not covered in this book. A classification of ap-
proaches to flow visualization, which is broadly that followed here, is given
by Laramee et al. [32], who then go on to survey the state-of-the-art for
texture-based techniques. The visualization of unsteady flow is the particular
topic of Lane [31]. Another comprehensive survey of unsteady flow literature
is given by Liu and Moorhead [35] before going on to describe their method
for acceleration of line integral convolution for unsteady flows.

On the topic of flow visualization using geometric objects, Zockler et al. [69]
describe the generation of illuminated streamlines, whilst parametric stream-
surfaces and implicit streamsurfaces are respectively described by Hultquist
[28] and van Wijk [58]. An evaluation of two methods of calculating streamrib-
bons (firstly using two adjacent streamlines and secondly by directly relating
twist to angular velocity in the manner of Fig. 7.7) is the topic of Pagendarm
and Post [43]. Visualization of flows is often as much a matter of knowing
what to leave out as what to put in, and the simplification of vector field
representations is discussed by Telea and van Wijk [53].

Dealing with dense representation approaches, spot noise is described by
van Wijk [57] and line integral convolution by Cabral and Leedom [12]. These
two are compared by de Leeuw and van Liere [18]. van Wijk [59] describes
the generation of flow textures at interactive framerates by the advection of
images using a mesh distorted according to the flow. Reference [59] deals with
2D domains, whilst Telea and van Wijk [54] describe the extension of the
method to 3D.
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Solutions

Chapter 2

2.1 Nominal data commonly found in the press includes profits recorded by
company name, gross national product per country, votes cast by political
party allegiance, sunshine hours by city.

Shares data versus time, as discussed in the chapter, is one that is fre-
quently plotted as a continuum even if the figures represent averages over some
period. Other quantities that are frequently similarly mistreated are average
earnings, average prices, average productivity. Data that is often collected in
terms of a numerical range rather than by means of a specific quantity in-
cludes a person’s age, her earnings, days off sick, visits to the doctor, number
of pets, number in household. No data points that have been gathered in this
way should be connected together into a line graph.

2.2 Objects in an ordinary office: computer mouse with a satin surface shows
a highlight and shading which indicate it is smoothly curved at the rear and
an abrupt change in shading at the front indicating an edge; paperknife that
is shiny and has a very narrow highlight when turned, showing it is reasonably
sharp; fax machine has a sharp feature on the front which is only evident by
touch, due to its matte surface which is currently in shade.

Chapter 4

4.1 The streetlamp emits a monochromatic light whose frequency is such
that it excites both the middle- and long-wavelength cone cells. The com-
bined signals from these cells are interpreted as seeing the colour yellow. On
the computer monitor, two different phosphors emit light at two different fre-
quencies, which each excite the middle- and long-wavelength systems but to
different degrees. The combined signals are once again interpreted as seeing



130 Solutions

the colour yellow. The two sensations are indistinguishable even though they
arise from intrinsically different stimuli.

4.2 The fully saturated colours lie on the three cube faces that meet at the
black point. The full-value colours lie on the three cube faces that meet at the
white point.

Yellow and magenta are secondary colours each made up of two primaries:
yellow is composed of red and green whilst magenta is composed of red and
blue. Dark yellow is therefore (1,1,0)/2 + (0,0,0)/2 = (0.5,0.5,0) and pale
magenta is (1,0,1)/2 4+ (1,1,1)/2 = (1,0.5,1). When estimating the coor-
dinates of a point in the RGB cube, you might find it useful to orient the
positive z-axis (i.e., red) to run left-to-right, the positive y-axis (i.e., green)
to run bottom-to-top, and the positive z-axis (blue) to come towards you out
of the screen.

4.3 The two renderings differ only in the shade of grey used in their back-
grounds. When the luminance of the background is roughly the same as the
brighter, yellow-coloured arrows, then the blue ones are the more noticeable
and the flow appears predominantly upwards. With a darker background the
situation is reversed and the flow appears predominantly downwards because
the yellow arrows stand out. In fact, the contributions of all the arrows roughly
cancel each other out and the flow is neither predominantly upwards nor
downwards. In this example the user’s insight into his data could be severely
compromised by such an arbitrary choice as the grey of the background used.

The effect can be confirmed as having nothing to do with the data by
altering the grey background level on just one of the renderings. It should
be possible to find two points either side of mid-grey — one where the yel-
low arrows virtually disappear and the other where the blue ones are nearly
invisible. The distance between these two points represents the extent of the
luminance imbalance across the colour map employed. Above and below these
points, both sets of arrows can be distinguished but on a dark background the
blue is less noticeable and on a light background the yellow fails to stand out.
Only one background shade of mid-grey renders both sets equally visible, as
they should be.

4.4 Recall that the fully saturated colours lie on the three cube faces that
meet at the black point and the full-value colours lie on the three cube faces
that meet at the white point. Sky blue and orange each lie on an edge that
is shared between a full-saturation face and a full-value face; therefore, they
both have S=1and V = 1.

At the green end of the green-magenta colour map the green component
can be estimated at about two-thirds, or 0.67. Since this is a linear mapping
through the midpoint G = 0.5, the green component at the opposite end
must be as far below 0.5 as 0.67 is above, i.e., at 0.33. The base hue at this
opposite end is magenta, i.e., R = 1, B = 1. The endpoints are therefore
(0,0.67,0) and (1,0.33,1) which yield luminances of 0.7152 x 0.67 = 0.48
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and 0.2126 x 1 4+ 0.7152 x 0.33 4+ 0.0722 x 1 = 0.52, respectively. The small
deviation from 0.5 is due to the approximate nature of the estimating process.
Note also that these endpoint colours are complementary, as they must be
when any point on the RGB cube is reflected through the body diagonal (see
Sect. 4.3.1).

A colour map linking yellow and blue involves estimating RGB values
on the face of the cube, which is difficult to do accurately. In this case the
endpoint colours are best calculated from the luminance equation, (4.1). We
can also note for simplification that for any shade of yellow R = G, hence at
the yellow end 0.2126 x R+ 0.7152 x G = 09278 x R = 0.5 ie., R =G =
0.539. Using the requirement for complementarity the endpoint colours are
therefore (0.539,0.539,0) and (0.461,0.461,1). Our perceptual nonlinearity is
easy to see in this result: a tiny variation across the scale in yellow is balancing
the maximum possible variation in blue component. However, reducing the
value of yellow to this extent makes for such a dark shade that the original
hue is difficult to discern. Contrast this colour map with the fully saturated,
full-value endpoints of the sky blue-orange one, but where the colours were
nonetheless equiluminant.

Using this colour map in the software of problem 4.3 you should find that
all the arrows are either equally hard (when the luminance of the background
is about one-half) or equally easy (against a rather different grey) to see.
The situation is the converse of that in the earlier problem, since now only
one background shade, mid-grey, renders the visualization useless (though not
untruthful), whilst all the other shades that may be chosen will make both
sets of arrows more or less, but nonetheless equally, visible.

Chapter 5

5.1 Figures 2.1 to 2.3 are all 1D nominal scalar data. Figure 2.4 is 1D ordinal,
and Fig. 2.5 is 2D ordinal, scalar data. Figure 2.6 is 2D nominal scalar data and
Fig. 2.7, being a slice, has reduced this to 1D nominal scalar data. Figures 2.8
and 2.9 are both 1D nominal scalar data. Figures 2.10 to 2.12 are all 2D
ordinal scalar data. Figure 2.13 is 2D ordinal scalar data that is also time-
varying. Figure 2.14 is 3D ordinal scalar data. Figures 2.15 and 2.17 are both
1D ordinal scalar data that is discontinuous. Figure 2.16 has the same data
classification as Figs. 2.1 to 2.3. Figures 2.18 and 2.19 are 1D aggregated
scalar data. Figure 2.20 is 1D ordinal scalar data that is continuous but has
been interpolated incorrectly. Figure 2.21 is 1D ordinal scalar data.

Figure 3.3 is 1D ordinal scalar data and Fig. 3.4 is 2D ordinal scalar data.

Table 5.1 and Fig. 5.1 are 1D ordinal scalar data. Figure 5.3 is 1D ordinal
multiple scalar data. Figures 5.4 and 5.5 interpret this same data as 1D ordinal
but vector type.

5.2 The two independent variables are latitude and longitude, needed to pin-
point a two-dimensional position, whilst the dependent variable is the height
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of the terrain at that position. This data is ordinal. A rambler’s map of the
countryside will usually use contours, since it is important to judge the lay
of the land locally and quite accurately in order to orient oneself and plan
a route. In an atlas it is more common to see colour used. By contrast this
can give an overview of a much larger area but the colour bands used span
large ranges of the heights. Two or three hues may be used to good effect —
progressively purer blue for deeper seas; green blending to orange for low to
medium altitude land; finally decreasing saturation towards white to evoke
the snow-tipped peaks of the highest parts.

5.3 Latitude and longitude are again the independent variables and again
this data is ordinal. Isobars, literally lines of “same weight”, connect those
points where the dependent variable, the pressure of the air, is the same. In
Table 5.2 this technique is called a contour plot; another generic name would
be “isoline”.

5.4 The wind speed and direction of the air comprises one vector dependent
variable. The temperature of the air is a second, scalar dependent variable
that can be added to the arrow plot in the form of colour.

Chapter 6

6.1 The upper plot generates four triangles per rectangular cell and draws the
straight line contours within these triangles. The middle plot shows contours
drawn as smooth curves within each rectangular cell. The lower contours are
straight lines drawn over a mesh comprising only two triangles per rectan-
gular cell. The first two plots follow faithfully the particular model chosen
for the data, but differ in appearance because the two models are different.
In the third the contours follow the planar model fitted to each triangle, but
the overall arrangement is insufficient. The bottom plot thus loses its mirror
symmetry, because the ambiguities involving the green contour are resolved
correctly on the right-hand side but incorrectly on the left. Had the triangu-
lation been chosen with diagonals in the opposite sense, the plot would have
been correct on its left-hand side and incorrect on the right. The problem has
arisen because the values were converted at the filter stage of the visualization
pipeline into a data structure intended for scattered points. Because of the
underlying regularity of this gridded data, this choice later proves inappropri-
ate.

6.2 The first ‘surface view’ has been produced with physically flat geometry
but normals applied that would result from the equivalent, displaced surface.
When viewed from a near-overhead position and rotated slightly the apparent
shading of the facets gives the fairly convincing impression that the geome-
try is nonplanar; only a very oblique viewing angle reveals this is not in fact
the case. The second surface, conversely, is physically nonplanar but has nor-
mals applicable to planar geometry. This arrangement reveals almost nothing,
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showing how essential shading is to understanding the variation of data across
the domain.

6.3 A visual comparison shows the green, yellow, and orange features respec-
tively are approximately equivalent to isosurfaces with threshold values 4.5,
1.3, and 0.2.

6.4 Rendering semi-transparent isosurfaces is reminiscent of the volume ren-
dered visualization. The classification of data for the latter was arranged to
have marked steps in transparency to pick out boundaries, equivalent to the
particular threshold values found in Prob. 6.3.

If the visualization is to appear in a book or traditional journal, then the
animated technique is clearly not viable. If the medium is interactive, either
variant might be used, though the animated one probably will take longer
to understand. Balanced against this is the ability of the animated variant
to show all the threshold values, whereas the other can only show a small
number of surfaces. Detail between the chosen thresholds, such as when the
different parts of the surface separate, will be lost.

Chapter 7

7.1 The z component of the vector at each point is a function of height, with
the actual value scaled according to the parameter «. Increasing o has the
effect of proportionately increasing the z component, with the exception of
those points with z = 0, so the streamline appears to spiral less tightly for
larger . When nearest neighbour interpolation is selected for a seed position
close to z = 0, the streamline goes round and round in circles on the base
plane because the particle never receives any upward motion. This is not the
case for trilinear interpolation because the blending of the zero z component
with the next (albeit small) nonzero value eventually moves the particle off the
base. Both nearest neighbour and trilinear interpolation produce a spiral for
a seed position with z > 0, but the radius of the spiral (incorrrectly) spreads
out a little when nearest neighbour interpolation is selected.

7.2 The techniques in use are a streamline and line integral convolution (a
flow texture). The visualization is an approximation because the flow texture
technique has been applied on a slice of the domain by neglecting the vector
component orthogonal to the plane. In effect, the vectors have been projected
onto the plane before having the flow texture applied. The approximation is
modest on the outer edges of the plane where the small pitch of the streamline
shows that the vector component normal to the plane is small. The approxi-
mation appears more significant towards the centre of the plane.



Useful Information

Web Sites

www. accusoft.com AccuSoft Corporation

www. allhands.org.uk/archive /index.html UK e-Science All Hands Archive
www.avs.com Advanced Visual Systems

www.hirs.de High Performance Computing Centre, Stuttgart
www.kitware.com Kitware, Inc.

www.mc.com Mercury Computer Systems, Inc

www.m-w.com Merriam-Webster online dictionary and thesaurus
www.nag.co.uk Numerical Algorithms Group Ltd.

www.opendz.org Open Visualization Data Explorer

www.paraview.org Parallel Visualization Application

www.rcuk. ac.uk/escience/ UK Research Councils’ e-Science programme
www.rsinc.com Research Systems, Inc.

www.sci.utah.edu SCI Institute, University of Utah

www.tcl.tk Tcl developer exchange

www.tecplot.com Tecplot, Inc.

www.vischeck.com Anomalous colour vision simulator

www.visenso.de Visual Engineering Solutions, GmbH

www.vni.com Visual Numerics, Inc.

www.ws.org W3C World Wide Web Consortium

www.web3d.org Web3D Consortium, including information on X3D

wikipedia.org Wikipedia, The Free Encyclopedia
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Abbreviations

AM Amplitude Modulation
apE application production Environment
AVO Abstract Visualization Object

AVS Application Visualization System (the product); Advanced Visual Sys-
tems (the company)

CFD Computational Fluid Dynamics

CIE Commission Internationale de I'Eclairage (trans. International Commis-
sion on Illumination)

COVISE COllaborative VIsualization and Simulation Environment
CRT Cathode Ray Tube

CT Computed Tomograph

FM Frequency Modulation

GCSE General Certificate of Secondary Education
GUI Graphical User Interface

HLRS High Performance Computing Center, Stuttgart
HLS Hue, Lightness, and Saturation (colour model)
HSV Hue, Saturation, and Value (colour model)
IBFV Image-based Flow Visualization

IBM International Business Machines

IDL Interactive Data Language

LCD Liquid Crystal Display

LIC Line Integral Convolution

MVE Modular Visualization Environment

NAG Numerical Algorithms Group

NSF National Science Foundation

OpenDX Open Visualization Data Explorer

OSGP Ohio Supercomputer Graphics Project
ParaView Parallel Visualization Application

RGB Red, Green, and Blue (colour model)

SCI Scientific Computing and Imaging

SGI Silicon Graphics, Inc



Abbreviations

SPECT Single-Photon Emission Computed Tomograph
Tcl Tool Command Language

Tk as in Tcl/Tk: GUI toolkit for Tcl

URL Uniform Resource Locator

ViSC Visualization in Scientific Computing
VISENSO VISual ENgineering SOlutions

VRML Virtual Reality Modelling Language

VTK The Visualization Toolkit

X3D XML-enabled 3D file format to succeed VRML
XML eXtensible Markup Language

YAC Yet-Another-COVISE
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Glossary

Abstract visualization object. An imaginary object with attributes such as
size, colour, transparency, texture, and so on. Data is mapped to these at-
tributes in order to represent it visually.

Additive model. An additive colour model describes the production of colour
by combining lights of various primary colours. Both RGB and HSV are ad-
ditive models of colour (cf. subtractive model).

Aggregated data. Occurs where a range of values in the data domain contribute
to a single value for the dependent variable that is applicable across the whole
of that range.

Analytical solution. Mathematical formulation of the solution to a problem
(cf. discretisation, numerical solution).

Application builder. In visualization, is synonymous with modular visualiza-
tion environment.

Auditory display. Computer system output that varies pitch, loudness, and
possibly timbre (character) of sound in order to convey meaning,.

Basis functions. A weighted sum of basis functions interpolates the values of
a variable within the range of the functions’ definition. For example, f(x) =
fox (1—x)+ f1 x x interpolates linearly between fy and f; for « in the range
0 to 1. The functions 1 — z and x are said to be basis functions.

Batch computing. A mode of working where a collection of commands and
data are first gathered together, submitted to a computer and the results
retrieved later. In computational science, is in the opposite sense to compu-
tational steering.

Beta movement. A sense of motion induced by seeing a sequence of slightly
different still images in rapid succession.

Body-fitted mesh. See curvilinear grid.

Cartesian coordinate system. Coordinates defined on a set of two or three
orthogonal axes (cf. polar coordinate system).

Client-server architecture. An arrangement of separate, networked processes
whereby client programs make requests of server programs, which in turn
generate and send back replies.

Co-linear. Points are co-linear if they can be connected by a single straight
line.

Co-planar. Points are co-planar if arranged so as all to sit on one plane. Any
two, and possibly more, co-planar points will also be co-linear.
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Collaborative visualization. Visualization by a group of users, usually geo-
graphically separated, working together on a shared problem. Can involve
synchronisation of a set of pipelines running locally, or include a degree of
distributed visualization, or a combination of both.

Colour gamut. The subset of all visible colours that a device can reproduce.

Colour map. A colour look-up table made by combining a line or curve in
some colour space with a definition of how data is distributed along it.

Complementary colours. In an additive model, colours are said to be comple-
mentary if they sum to white.

Computational science. Science accomplished using computers, as distinct
from the science or study of computers themselves.

Computed tomograph. Investigation technique whereby X-rays are passed
through a subject from various directions and the emerging rays are collected
by sensitive detectors, rather than film. A computer reconstructs each exam-
ined cross-section in grid-wise fashion in order to build up a three-dimensional
density map.

Computational steering. An investigative paradigm where the parameters of
a running simulation can be altered by an experimenter according to what is
currently seen in the visualization of the results.

Cone cell. Receptor in the retina that is preferentially sensitive to short-,
medium- or long-wavelength light.

Continuity. A function is said to be C° continuous if its data values “join on”
across piecewise elements, C'' continuous if its first derivatives match, and C?
continuous when its second derivatives correspond.

Critical fusion frequency, or flicker fusion frequency. The frequency at which a
flashing light will appear continuous to an observer, partly due to the chemical
process of light detection that takes place in the retina.

Curvilinear grid. Conceptually, curvilinear grids begin life as rectilinear grids
but are then distorted to fit the problem being considered. A common use
is as a body-fitted mesh, whose boundary outlines some object of interest
in the simulation. Body-fitted meshes can also result from a triangulation or
tetrahedrisation of scattered data.

Data domain. The portion of (usually) space and/or time that is spanned by
the independent variable(s). For example, the phrase “1D domain” indicates
a problem with one independent variable.

Dataflow program. An application composed of a number of asynchronous
processes connected together in a directed graph, the connections carrying
data streams that are operated on by the processes.
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Dependent variable. The variables of a problem whose values are calculated
or measured once particular values(s) of the independent variable have been
decided upon. Often, though not exclusively, are mapped to height or colour
in a visualization.

Deuteranope. Person with colour vision deficiency stemming from the middle-
wavelength or ‘green’ receptor system.

Diffuse reflection. Light reflected equally in all directions as from a matte
surface (cf. specular reflection).

Directed acyclic graph. A set of nodes and their connections that can only
be traversed in one direction and where no sequence of connections forms a
closed loop. A directed graph relaxes this last condition.

Discretisation. Computational science often sets out with a mathematical for-
mulation of a problem but typically the equations cannot be solved analyti-
cally over the whole domain. Discretisation is the process of breaking down
into smaller chunks that can be solved numerically.

Distributed visualization. A mode of working where some parts of the visual-
ization pipeline are hosted remotely from the user observing the results.

Dual graph. The Delaunay triangulation is dual to the Dirichlet tessellation
since the common boundaries of the latter determine the joined vertices of
the former.

Extrapolation. Using a function or functions to calculate dependent variable
values at places in the domain that lie beyond data points.

Fibre bundle. Cartesian product of a base space and a fibre space, respectively
analogous to the independent and dependent variables of a problem. A par-
ticular set of values for the dependent variable defines a bundle cross-section.
For example, data that we might plot as two line graphs drawn on the same
set of axes comprises two cross-sections of a fibre bundle made up of the real
number line, the fibre space, attached to every point of a 1D base space.

Filtering. In general, the transformation (often of data) from one form into
another. In the dataflow model of visualization, is used to denote the trans-
formation of raw data into derived data.

Fovea. Small but very high resolution portion of the eye’s retina directly op-
posite the pupil.

Grid computing. Draws analogy with the electricity grid to imply pervasive
and, as far as is possible transparent, access to computational resources, data
sources, experimental equipment and sensors.

Haptic display. Computer system output that simulates touch and force-
feedback sensations.
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HSV colour model. An inverted cone-shaped (strictly, a hexcone) model con-
structed on axes measuring Hue (the colour perceived), Saturation (how
washed out is the colour) and Value (how dark is the colour).

Independent variable. The variables of a problem that define its extent, usu-
ally, though not exclusively, in space and/or time. Often, though again not
exclusively, are mapped to the axes of the display and to animation.

Interpolation. Using a function or functions to calculate dependent variable
values at places in the domain that lie between data points. A characteristic
of an interpolating function must be that it passes through the data points.

Isoline. Lines joining function values that are the same. For 2D data is syn-
onymous with ‘contour’.

Logarithmic scale. Plotting data on a logarithmic scale involves first express-
ing the numbers as a base raised to a power, and then placing the number
according to its power, rather than its value as we would on a linear scale.
Log-linear and log-log graph paper is pre-printed at spacings that remove the
need explicitly to calculate the powers. It is commonly used to show exponen-
tial and power relationships such as y = e*® and y = az?, since these plot as
straight lines and the constants a and b can therefore easily be found.

Luminance. Photometric counterpart of the perceptual quality called bright-
ness.

Manifold. A structure that locally appears to be of lower dimension than it
does globally.

Mapping. In the dataflow model of visualization, is used to denote the alloca-
tion of certain aspects of data to control the attributes of the chosen abstract
visualization object.

Mechanoreceptor. Receptor in skin that responds to an essentially mechanical
stimulus such as stretching or a change in pressure.

Modular visualization environment. A visualization package consisting of an
extensible library of code modules that the user connects together to build
their application, usually using visual programming.

Monochromatic light. Visible radiation having a single wavelength. For exam-
ple, the light from a sodium streetlamp is monochromatic and is interpreted
by the viewer as having the colour yellow.

Monolith. Literally, “single stone”. In computing is used to denote a program
or application whose several components or facilities are gathered together
into one, single unit.

Motion parallax. Apparent motion of near-field objects contrary to the ob-
server’s movement that gives a sense of depth.

Nominal data. Where the independent variable is distinguished by name and
therefore there is no inherent order to the data points.
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Numerical solution. See discretisation (cf. analytical solution).

Ordinal data. Where there exists an order to the data points (cf. nominal
data) but values may be discontinuous (not join on) from one point to the
next. If ordinal data is continuous, it will join on from one value to the next
but now we must exercise care when visualizing in how we interpolate between
the data points.

Orthogonal. Mutually perpendicular.

Parametric form. It is sometimes convenient to parametrise a curve rather
than define it as a function of variables. For example, the sequence of points
lying on the line y = ma + ¢ can be found by choosing an z and solving
for y. Alternatively the relationship can be parametrised as two equations
in t, i.e. (y = mt + ¢;x = t). Conceptually we fix ¢t as a distance along the
line and solve for both z and y. Another example: the parametric form of a
circle 22 + y? = r? is (z = rcos@;y = rsinf). The parameter 6 is the angle
subtended by the radius passing through point (z,y) on the circle.

Perceptual uniformity. Perceptually uniform descriptions of colour aim to
make equal-sized steps within the colour space correspond with equal changes
in perceptual response.

Perceptualisation. Counterpart of visualization that uses other than the vi-
sual sense to give insight into data. May include auditory display and haptic
display.

Perspective view. An object or scene rendered so that distant objects seem
smaller and parallel lines converge to a vanishing point.

Polar coordinate system. Three-dimensional cylindrical polar coordinates are
defined in terms of an angle within a plane containing the origin, a radial
distance from the origin within this plane, and a perpendicular distance from
this plane. Two-dimensional polar coordinates dispense with the perpendic-
ular measure. Spherical polar coordinates are defined in terms of an angle
within a plane containing the origin, an angle from a line perpendicular to
this plane and a radial distance from the origin.

Polygon. Many-sided closed shape.

Polyhedron. Many-faceted closed volume built by connecting polygons edge-
to-edge.

Polyline. Multisegmented line comprising a list of the segments’ endpoints.

Position vector. The position vector r of a point P(z,y,2) isr = ax+yy +22
where x, y and z are vectors of length 1 defining P’s coordinate system.

Program library. A convenient way to re-use software, whereby commonly
needed functionality is kept separate and described at a high level by means
of an interface. The programmer uses the software by assigning values to
the parameters in the interface, but remains unaware of its implementation
details.
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Protanope. Person with colour vision deficiency stemming from the long-
wavelength or ‘red’ receptor system.

RGB colour model. A cube-shaped model constructed on axes measuring the
contribution of Red, Green, and Blue primaries to a resulting mixture colour.
Radian. The angle between two radii of a circle of radius r that cuts off on
its circumference an arc of length r. Since the circumference of a circle is 27r
it follows that one complete revolution comprises 27 radian.

Rendering. In visualization, the realisation of the abstract visualization object
as an image on the chosen display device.

Retina. The light-sensitive surface covering the interior of the eye.

Saccades. Reflexive eye movements that bring a particular portion of the field
of view onto the eye’s fovea and during which vision is suppressed.

Saddle. Data whose cross-section is valley-shaped in one direction and hill-
shaped in another. The particular place where locally the cross-section with
the highest valley intersects that with the lowest hill is the saddle point itself.
Scalar. An entity that can be described by a single number.

Shade. Increasing the amount of black in a colour gives rise to progressively
darker shades.

Slicing. Reducing the dimension of the independent variable space whilst leav-
ing the dependent variable space unchanged (cf. stacking).

Specular reflection. Light reflected in a particular direction giving the spot or
streak of light (specular highlight) that is characteristic of a shiny surface (cf.
diffuse reflection).

Stacking. (1) Composition of a set of lower-dimensional independent variable
spaces into a single higher-dimensional space. A requirement is that the con-
stituent spaces must all involve the same dependent variable(s) (cf. slicing).
(2) Concatenation of bars in a chart or the plotting of one variable on the
rising baseline of preceding one(s), in order to show multiple scalar dependent
variables simultaneously.

Subtractive model. A subtractive colour model describes the production of
colour by selective absorption from incident light composed of a mixture of
colours (cf. additive model).

Surface normal. A vector perpendicular to the surface at its point of attach-
ment.

Surface shading. Flat shading of (for example) a triangle mesh uses the angle
between the surface normal of each facet and a directional light source in
order to calculate how much light is reflected in the viewing direction. This in
turn determines how bright the whole of that particular surface triangle should
appear. Smooth shading first constructs vertex normals, often by averaging the
surface normals of each triangle around the vertex. For any one triangle, each
vertex normal will typically point in a different direction, giving a different
apparent brightness for the same light source. These different values are then
interpolated across the triangle.
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Tazxonomy. The science of classification.

Tessellation. A space-filling collection of polygons. From the Latin tesserae
meaning tiles.

Tiling. The practice of arranging a sequence of visualizations to form a single
display.

Tint. Decreasing the amount of white in a colour gives rise to progressively
purer tints.

Tristimulus theory. A theory of colour vision that proposes three types of
colour receptor, each preferentially sensitive to light of a particular wave-
length.

Tritanope. Person with colour vision deficiency stemming from the short-
wavelength or ‘blue’ receptor system.

Trompe l'oeil. An art form whereby planar drawings, pictures, and friezes are
specifically executed so as to fool the observer into thinking the subject is a
tangible, three-dimensional artefact. Examples include a flat ceiling painted
to mimic a domed interior, or apartment ‘balconies’ that do not really project
from the wall that ‘supports’ them. Characteristically there may be a partic-
ular combination of viewing position and incident light direction that renders
the trompe [’oeil virtually indistinguishable from the real thing.

Turnkey visualizer. A type of visualization program that works without first
requiring any program construction or customisation phase.

Vector. An entity that consists of a magnitude (a scalar quantity) and a
direction defined according to some coordinate system.

Vertex. In computer graphics, a mesh is made up of vertices (nodes) connected
by lines (edges). In visualization, data is commonly associated with vertices
or the cells enclosed by vertices and their connecting lines.

Virtual reality modelling language. Together with its successor X3D, VRML
provides a file format that permits description of three-dimensional objects
and scenes. Used to convey geometry content over the World Wide Web.

Visual programming. A paradigm whereby the user interactively connects to-
gether functional components within a visual workspace, in order to construct
a working program.



Index

“function of” notation, 57
2D bar chart, 10, 73, 121
2D histogram, 75

abstract visualization object, 28, 57, 65,
69, 121

AccuSoft, 35

additive colour model, 40, 42

Advanced Visual Systems, 35

aggregated data, 20, 64

ambiguity, 84, 96, 123

amira, 35, 119

animation, 17, 18, 66, 67, 92, 121

anomalous colour vision, 38, 53, 119,
120

anomalous trichromacy, 120

apE, 33

application builder, 33

arrow plot, 64, 104

auditory display, 66

AVS, 33, 35

AVS/Express, 35, 119

bar chart, 20, 64, 69
basis functions, 118
beta movement, 17, 117
body-fitted mesh, 90
bounded region plot, 76
brightness, 50, 120

C++, 34

Cartesian coordinates, 59, 103
classification, 98, 101
clustering, 69, 73

collaborative visualization, 32, 118
colour gamut, 41

colour mapping, 46

colour perception, 38

colour vision deficiency, 38, 53, 119, 120
complementary colours, 40
compositing, 98, 123

computational steering, 30, 118

cones, 38, 46, 50, 53, 119

contour plot, 14, 64, 66, 81, 92, 121, 122
COVISE, 35

critical fusion frequency, 17

data domain, 58, 121

data enrichment, 28

data referencing, 35

dataflow model, 28, 118

degrees of freedom, 65, 69
Delaunay triangulation, 80, 85, 122
dependent variable, 55, 60, 121
deuter-anope,-anopia,-anomaly, 120
dichromacy, 120

directed acyclic graph, 28

Dirichlet tessellation, 80
discontinuous data, 20, 64, 77
discrete solution, 58, 122
distortion, 12, 14

distributed visualization, 31, 118
drag-and-drop, 33

electromagnetic spectrum, 37
extrapolation, 22

fibre bundle, 62, 122



146 Index

filtering, 28, 118
fire hoses of data, 3, 117
flow texture, 112, 124

gradient, 85, 94, 123

haptic display, 66, 119
height-field plot, 87, 94

hidden line removal, 78

hidden surface removal, 78
higher-order interpolation, 122
histogram, 20, 72

HLRS, 35

HLS colour model, 119

HSV colour model, 42, 119, 120

IBFV, 112, 124

IBM, 33

IBM Visualization Data Explorer, 33,
35

IDL, 34

image display, 64, 66, 76, 89, 92

image-based flow visualization, 112, 124

independent variable, 55, 58, 121

interpolation, 22, 69, 118, 122

IRIS Explorer, 33, 35, 119

isosurface, 64, 93

Khoral Research, 33
Khoros, 33, 35
Kitware, 34

LIC, 112, 124

light, 37

line graph, 22, 55, 66, 72, 118
line integral convolution, 112, 124
line of greys, 40, 42, 120

linear interpolation, 81, 89, 122
logarithmic scale, 37

luminance, 50, 120

luminance variation, 50, 52, 120

manifold, 60, 61, 66, 92, 122
mapping, 28

marching cubes, 94, 123
marching tetrahedra, 96
mathematical model, 56, 122
mechanoreceptor, 119

Mercury Computer Systems, 35
milkmaid’s stool, 78

modular visualization environment, 33,
118

NAG, 35

nearest neighbour interpolation, 89
nominal data, 20, 64, 121, 122
NSF report, 2, 117

numerical solution, 56, 58, 122

OpenDX, 35
ordinal data, 20, 64, 122
OSGP, 33

parametric form, 122

ParaView, 34, 119

pen plotter, 122

perception, 7

perceptual uniformity, 46, 50, 121
perceptualisation, 8, 66
perspective, 12, 14

phi phenomenon, 117

photopsin, 119

pie chart, 12, 70, 118

polar coordinates, 59, 103
primary colours, 40
prot-anope,-anopia,-anomaly, 120
PV-WAVE, 34

ray-casting, 98, 123
rendering, 28

Research Systems, 34
RGB colour model, 40, 120

saccades, 18, 117

saddle point, 84, 96, 123
scalars, 69, 122

scatterplot, 70, 122

SCI Institute, 35

SCIRun, 35, 119

SGI, 33

shade, 42, 52

shaded contour plot, 88
shading, 14

shared memory, 35

slicing, 62, 66, 67, 73, 74, 77, 90
spectral sensitivity, 50, 52
specular reflection, 14
splatting, 101, 123

spot noise, 112, 124

stacking, 62, 66, 69, 73, 74, 92
Stellar Computer, 33



streakline, 112

streamline, 106, 124

streamribbon, 108, 124

streamsurface, 108, 124

streamtube, 108

superimposition, 69

surface normal, 86, 94, 123

surface view, 10, 14, 66, 67, 85, 118, 121
swept polygon, 110, 124

taxonomy, 64, 122
Tecplot, 34
tetrahedrisation, 90, 122
Thiessen region, 80
Thomas Young, 40

time surface, 110
timeline, 106

tint, 42, 52

trajectory, 61, 64, 122
triangulation, 69
tristimulus theory, 38, 40
trit-anope,-anopia,-anomaly, 120

Index 147

turnkey visualizer, 33
underlying model, 22, 118, 122

vectors, 103, 124

vertex normal, 86, 94, 123
VISENSO, 35

visible radiation, 37

VisiQuest, 35

Visual Numerics, 34

visual programming, 33
visualization before computers, 117
visualization command language, 34
visualization library, 34

volume render, 64, 90, 98

volume visualization, 90, 123
Voronoi diagram, 80

VRML, 31

VTK, 34, 119

YAC, 35




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /DetectCurves 0.100000
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /PreserveDICMYKValues true
  /PreserveFlatness true
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /ColorImageMinDownsampleDepth 1
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /GrayImageMinDownsampleDepth 2
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /CheckCompliance [
    /None
  ]
  /PDFXOutputConditionIdentifier ()
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




